

RESEARCH GRANT AWARDS

January 2026

Petersen Accelerator Award

Lynnette Fernandez-Cuesta, PhD

Team Leader, International Agency for Research on Cancer (IARC-WHO)

Characterization of supra-carcinoids cell states to inform interception strategies

Dr. Fernandez-Cuesta seeks to uncover the hidden characteristics of the most aggressive and little-understood form of lung neuroendocrine tumors, supra-carcinoids. This project can increase our understanding of how these tumors function by uncovering the biological mechanisms that drive their aggressiveness, developing biomarkers to predict recurrence, and creating tools for accurate diagnosis and targeted treatment.

Sponsored by: The Margie and Robert E. Petersen Foundation

Investigator Awards

Mauro Cives, PhD

Associate Professor, University of Bari Aldo Moro

Developing next-generation TCR-based therapies for pancreatic neuroendocrine tumors

This project focuses on identifying immune cells that can recognize and attack pancreatic neuroendocrine tumors, but are currently too weak to stop them. Using advanced technologies, Dr. Cives' team will identify the strongest of these immune cells, boost their function, and re-engineer them into a new immunotherapy called adoptive T-cell therapy. This therapy aims to drive the patient's own immune system to fight cancer more effectively.

Suzann Duan, PhD

Assistant Professor, University of California, Irvine

Elucidating the role of aging in GEP-NET development

By examining how aging may contribute to the development of gastroenteropancreatic neuroendocrine tumors, Dr. Duan aims to identify age-related signals that reprogram the gut's support cells, called glial cells, potentially leading to new biomarkers for earlier detection and treatments that target aging-related pathways, including some with existing FDA-approved drugs.

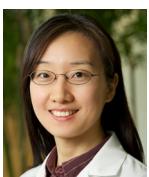
Susanne Kossatz, PhD

Professor, TUM University Hospital Rechts der Isar

Targeted delivery of DNA repair-inhibiting drugs to GEP-NETs

Peptide receptor radionuclide therapy (PRRT) can stop or slow the growth of gastroenteropancreatic neuroendocrine tumors (GEP-NETs), but progression can start again when some of the tumor cells repair themselves. To strengthen PRRT, Dr. Kossatz is developing a DNA repair inhibitor that will be targeted directly to the tumor and administered in combination with PRRT, which might allow patients to receive more treatment cycles and achieve longer-lasting benefits.

Sponsored by: Karpus Family Foundation

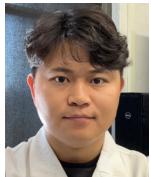


Craig Levin, PhD

Professor, Stanford University

Novel method to assess NET metabolism and somatostatin receptor expression in a single PET scan

Currently, PET scanners can only use one tracer at a time, providing doctors with only one piece of information per scan. FDG and 68Ga-DOTATATE PET scans can provide complementary information for NET staging, prognosis, and response to therapy. This project aims to develop PET methods that enable the use of two tracers in a single scan, which will reduce patient burden and offer better guidance for selecting the most effective treatment.


Yuanyuan Qiao, PhD

Research Assistant Professor, University of Michigan

Targeting lipid metabolism in gastroenteropancreatic neuroendocrine tumors

Dr. Qiao's research examines how NETs rely on fats and cholesterol to fuel their growth. By blocking the protein PIKfyve, especially in combination with the standard mTOR inhibitor drug Everolimus, researchers can disrupt both fat metabolism and iron balance in tumor cells, making them more vulnerable to treatment. This could lead to treatments that are not only more effective but also longer-lasting.

Mentored Research Awards

Yeonghwan Kim, PhD

Postdoctoral Fellow, Columbia University

Elucidating the mechanisms for resistance to antiangiogenic therapy and metastasis in PanNETs

One of the main treatment strategies for advanced PanNETs is blocking the growth of new blood vessels, which tumors need to survive. Using a specialized mouse model that closely mimics human disease, Dr. Kim's team discovered that a protein called VEGF-C may allow tumors to grow new blood vessels, making it a powerful new target for treatment and expanding possibilities for personalized therapies that slow tumor growth, reduce liver metastases, and improve both survival and quality of life for patients with PanNETs.

Sponsored by: Elaine Nord

Chiara Mazziotta, PhD

Research Fellow, Dana-Farber Cancer Institute

Role of YAP and TAZ restriction in Merkel Cell Carcinoma development

This project looks at two proteins, called YAP and TAZ, which typically foster healthy cell growth but are inactive in Merkel Cell Carcinoma (MCC). Interestingly, when these proteins are switched back on in the lab, MCC cells stop growing and die. Dr. Mazziotta is also studying another pathway, called mTOR, which helps MCC cells survive and proliferate. Her findings suggest that blocking mTOR while reactivating YAP and TAZ could be a promising new treatment strategy and may provide insights into other neuroendocrine cancers.

Sponsored by: Elaine Nord

Hui Yu, MD, PhD

Research Scientist, University of Colorado

Define the mechanisms and the impact of potential critical somatic gene mutations in DIPNECH

Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia (DIPNECH) is a rare lung disease in which abnormal neuroendocrine cells spread throughout the small airways. By studying DNA from patients, Dr. Yu's team discovered several gene mutations that may drive DIPNECH and its progression to lung NETs. This project will examine how these mutations change cell behavior, and the team will use advanced tools to identify drugs that can specifically target the abnormal pathways involved.

Sponsored by: The Firsty Family and the extended Seltzer Family in memory of Julie Seltzer Firsty

Pilot Awards

Tiane Chen, MD, PhD, MSc

Assistant Professor, Johns Hopkins University

Investigating GLP-1 receptor as a novel prognostic and therapeutic biomarker for pancreas NETs

The protein GLP-1R may be a revealing biomarker for the behavior of pancreatic neuroendocrine tumors. By analyzing a large number of patient cases, Dr. Chen's team intends to learn whether the presence or absence of GLP-1R is linked to how aggressive a tumor is and whether the disease is likely to return or spread. This work could lead to more personalized treatment strategies and new discoveries that improve survival and quality of life for PanNET patients.

Kirsten Kübler, MD, PhD

Professor, Berlin Institute of Health at Charité

Uncovering metaplastic transitions to improve classification of pancreatic neuroendocrine neoplasms (PanNENs)

It's often difficult to predict how pancreatic neuroendocrine neoplasms will respond to treatment. A subset of pancreatic NENs undergoes a process called metaplasia, where tumors become more aggressive and less responsive to treatment over time. To better understand this, Dr. Kübler's team will perform detailed molecular studies of these tumors and look for biomarkers that can identify them. A better understanding of this process can result in improved patient outcomes and more personalized care for people with pancreatic NENs.

Tiana Jovanovic-Talisman, PhD

Associate Professor, Beckman Research Institute of City of Hope

Characterization of extracellular vesicles for early detection of neuroendocrine tumors

Because neuroendocrine tumors can grow slowly and without major symptoms, they can go undetected. Tumor cells release tiny particles, called extracellular vesicles (EVs), into the bloodstream. These vesicles carry unique "fingerprints" that reveal their tumor origin. Dr. Talisman's research aims to develop a non-invasive blood test to detect these EVs, helping patients receive treatment earlier and dramatically improving outcomes.

Sponsored by: Laura and Lew Moorman

Thomas Walter, MD, PhD

Professor, Cancer Research Center of Lyon

PRMT5 inhibitor: next option for neuroendocrine tumors?

Dr. Walter's research team is focusing on two proteins, MTAP and PRMT5, that play key roles in cancer cell survival. The team will analyze tumor samples to see how MTAP and PRMT5 levels vary across different NETs and will test PRMT5-blocking drugs in the lab. If successful, this research could identify a new class of treatments for NET patients and help determine which patients are most likely to benefit.

Sponsored by: The Family and Friends of Diamond Brown, In Loving Memory