Neuroendocrine Tumor Research Foundation, 31 St. James Avenue, Suite 365, Boston, MA 02116 | 617.946.1780 | netrf.org

DEDICATED TO CURING NEUROENDOCRINE CANCER

INVESTIGATOR AWARDS

Talia Dayton, PhD
Professor & Director, European Molecular Biology Lab (EMBL), Barcelona
Using Patient-Dependent Tumor Organs to Uncover Mechanisms of Pulmonary NETs

As part of a previous NETRF-funded project, Dr. Dayton and her colleagues found a way to grow more NETs in the lab by making 3D cell-like organoids that derived from patients or PDTOs. In this project, Dr. Dayton and her research group will use those pulmonary NET PDTOs to identify new therapeutic targets and molecular mechanisms, to find out how pulmonary NETs develop and grow.

Jeffrey Frost, PhD
Professor and Assistant Dean for Graduate Studies, The University of Texas Health Science Center at Houston
Harnessing Ferroptosis Initiating Drugs to Target GEP-NETs

Dr. Frost and his team will develop a novel approach to identify and treat neuroendocrine tumors (NETs) using ferroptosis, a type of cell death. They will use ferroptosis-inducing drugs to target NETs and validate their approach in preclinical models.

Nancy Joseph, PhD
Professor, University of California, San Francisco
Unlocking Drug Targets for Pancreatic Neuroendocrine Tumors

This project aims to identify new drug targets for pancreatic neuroendocrine tumors (PanNETs) through high-throughput screening and computational methods.

Daniel Schramski, MD
Senior Investigator, Lunenfeld-Tanenbaum Research Institute, part of Sinai Health and Associate Professor, University of Toronto
Establishing & Characterizing a Pancreatic Neuroendocrine Tumor Mouse Model with Genetically Engineered Human Telomeres

One of the challenges in studying pancreatic neuroendocrine tumors (PanNETs) is the lack of suitable preclinical models. Dr. Schramski and his team have developed a novel mouse model that can mimic the natural progression of PanNETs and help identify new therapeutic targets.

MENTORED RESEARCH AWARDS

Nicolas Alcaina, PhD
Scientist, International Agency For Research On Cancer
Reconstructing the Evolutionary History of Neuroendocrine Tumor Subtypes

Dr. Alcaina and colleagues have previously discovered subtypes of NETs with distinct molecular characteristics. In this project, they aim to develop a novel, more precise classification of NETs that better accounts for prognosis and therapeutic targets. This will lead to safer and more effective treatments for NET patients.

Elham Banazeghi, PhD
Research Fellow, Uppsala University
Epigenetic Characterization of Pancreatic Neuroendocrine Neoplasms (PanNETs)

This project focuses on understanding the epigenetic mechanisms underlying metastasis with the ultimate goal of improving prognostic factors for PanNET patients and developing strategies to prevent metastasis.

Susanne Kossatz, PhD
Professor and Distinguished Scientist, BC Cancer
Glycomic Characterization of Pancreatic Neuroendocrine Neoplasms

Dr. Kossatz and her team will investigate how glycomics can be used to identify new therapeutic targets and improve the prognosis of patients with PanNETs. The project aims to uncover new markers for personalized medicine.

Anguojian Sadedin, PhD
Directeur De Centre, Global Oncology & Research, The Institute of Cancer Research
Demarcating Pancreatic Neuroendocrine Neoplasm Tumor Progenitors

Dr. Sadedin and his team aim to establish a new in vitro model to identify the drivers of pancreatic neuroendocrine neoplasms (PanNE-Ns) and their molecular mechanisms at the cellular level. This will lead to new therapeutic strategies for these aggressive tumors.

James Yao, MD
Professor and Department Chair, University of Texas MD Anderson Cancer Center
Harnessing Ferroptosis Initiating Drugs to Target GEP-NETs

Dr. Yao and his team will develop a novel approach to identify and treat neuroendocrine tumors (NETs) using ferroptosis, a type of cell death. They will use ferroptosis-inducing drugs to target NETs and validate their approach in preclinical models.

PILOT AWARDS

Funded by Elaine Nord.

Sharon Gorski, PhD
Assistant Professor, University of Toronto
Molecular Mechanisms in the Progression of Pancreatic Neuroendocrine Tumors

This project aims to understand which tumors are at risk for progression from low-grade to high-grade at diagnosis. We will use state-of-the-art DNA technologies to examine the genomes and epigenomes of PanNETs at multiple time points within individual patients who have undergone serial biopsies over time, including in those with stable disease, those with progressive disease, and those who were high-grade at initial diagnosis.

Funded by Lever and Pher.

Jeffrey Frost, PhD
Professor and Assistant Dean for Graduate Studies, The University of Texas Health Science Center at Houston
Harnessing Ferroptosis Initiating Drugs to Target GEP-NETs

Dr. Frost and his team will develop a novel approach to identify and treat neuroendocrine tumors (NETs) using ferroptosis, a type of cell death. They will use ferroptosis-inducing drugs to target NETs and validate their approach in preclinical models.

Funded by The Carol Drucker Charitable Trust.

Nancy Joseph, PhD
Professor, University of California, San Francisco
Unlocking Drug Targets for Pancreatic Neuroendocrine Tumors

This project aims to identify new drug targets for pancreatic neuroendocrine tumors (PanNETs) through high-throughput screening and computational methods.

Funded by NETRF's generous 2023 Giving Tuesday donors.

Talia Dayton, PhD
Professor & Director, European Molecular Biology Lab (EMBL), Barcelona
Using Patient-Dependent Tumor Organs to Uncover Mechanisms of Pulmonary NETs

As part of a previous NETRF-funded project, Dr. Dayton and her colleagues found a way to grow more NETs in the lab by making 3D cell-like organoids that derived from patients or PDTOs. In this project, Dr. Dayton and her research group will use those pulmonary NET PDTOs to identify new therapeutic targets and molecular mechanisms, to find out how pulmonary NETs develop and grow.

Jeffrey Frost, PhD
Professor and Assistant Dean for Graduate Studies, The University of Texas Health Science Center at Houston
Harnessing Ferroptosis Initiating Drugs to Target GEP-NETs

Dr. Frost and his team will develop a novel approach to identify and treat neuroendocrine tumors (NETs) using ferroptosis, a type of cell death. They will use ferroptosis-inducing drugs to target NETs and validate their approach in preclinical models.

Nancy Joseph, PhD
Professor, University of California, San Francisco
Unlocking Drug Targets for Pancreatic Neuroendocrine Tumors

This project aims to identify new drug targets for pancreatic neuroendocrine tumors (PanNETs) through high-throughput screening and computational methods.

Daniel Schramski, MD
Senior Investigator, Lunenfeld-Tanenbaum Research Institute, part of Sinai Health and Associate Professor, University of Toronto
Establishing & Characterizing a Pancreatic Neuroendocrine Tumor Mouse Model with Genetically Engineered Human Telomeres

One of the challenges in studying pancreatic neuroendocrine tumors (PanNETs) is the lack of suitable preclinical models. Dr. Schramski and his team have developed a novel mouse model that can mimic the natural progression of PanNETs and help identify new therapeutic targets.

Mentored by Lever and Voe.

Nicolas Alcaina, PhD
Scientist, International Agency For Research On Cancer
Reconstructing the Evolutionary History of Neuroendocrine Tumor Subtypes

Dr. Alcaina and colleagues have previously discovered subtypes of NETs with distinct molecular characteristics. In this project, they aim to develop a novel, more precise classification of NETs that better accounts for prognosis and therapeutic targets. This will lead to safer and more effective treatments for NET patients.

Susanne Kossatz, PhD
Professor and Distinguished Scientist, BC Cancer
Glycomic Characterization of Pancreatic Neuroendocrine Neoplasms (PanNETs)

This project focuses on understanding the epigenetic mechanisms underlying metastasis with the ultimate goal of improving prognostic factors for PanNET patients and developing strategies to prevent metastasis.

Funded by Lever and Levo.

Anguojian Sadedin, PhD
Directeur De Centre, Global Oncology & Research, The Institute of Cancer Research
Demarcating Pancreatic Neuroendocrine Neoplasm Tumor Progenitors

Dr. Sadedin and his team aim to establish a new in vitro model to identify the drivers of pancreatic neuroendocrine neoplasms (PanNE-Ns) and their molecular mechanisms at the cellular level. This will lead to new therapeutic strategies for these aggressive tumors.

Funded by NETRF's generous 2023 Giving Tuesday donors.

James Yao, MD
Professor and Department Chair, University of Texas MD Anderson Cancer Center
Harnessing Ferroptosis Initiating Drugs to Target GEP-NETs

Dr. Yao and his team will develop a novel approach to identify and treat neuroendocrine tumors (NETs) using ferroptosis, a type of cell death. They will use ferroptosis-inducing drugs to target NETs and validate their approach in preclinical models.

Funded by The Carol Drucker Charitable Trust.

Funded by NETRF's generous 2023 Giving Tuesday donors.