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Objectives 
Pulmonary carcinoids (PCA), comprising typical and atypical carcinoids, are a group of low grade rare 
lung neuroendocrine tumours that, unlike their high grade counterparts, have relatively good 
prognosis and no known risk factors. Despite their better prognosis, many PCA patients present with 
metastatic disease or suffer relapse, both of which respond poorly to current therapeutic regimens, 
and identifying patients at greatest risk of relapse is difficult. Furthermore, little is known about the 
recently described supra-carcinoid subtype, which are morphologically similar to atypical carcinoids, 
yet more aggressive. Given their rarity, characterisation of these tumours has been limited, 
particularly with regard to whole-genome sequencing of atypical and supra-carcinoid tumours. In the 
lungNENomics project, part of the Rare Cancers Genomics initiative, we aim to perform 
comprehensive multi-omic molecular, morphological, and clinical characterisation of PCA, including 
the supra-carcinoid subtype. This study will help us to understand the biological mechanisms 
underlying the development of PCA, and improve characterisation and classification of supra-
carcinoids.  

 
Methods 
We have generated whole-genome sequencing (WGS), RNA sequencing and DNA methylation array 
data for tumour specimens from 91 patients, including 58 patients with atypical tumour type. These 
data have been combined with previously published RNA sequencing and DNA methylation array data 
for predominantly typical carcinoids, and higher grade lung neuroendocrine tumours, in order to 
perform integrative multi-omics factor analysis for molecular characterisation (Argelaguet et al. Mol 
Syst Biol 2018).  

 
Results 
Previously the Rare Cancers Genomics team have published an analysis of gene expression and DNA 
methylation array data for a collection of PCA, uncovering clinically relevant groups and the existence 
of the new supra-carcinoid entity (Alcala et al. Nat Comms 2019). In the current study we have 
improved upon previous efforts by incorporating a large number of new samples, enriched for atypical 
carcinoids, the majority of which have also been subjected to WGS. These data have been integrated 
to expand our first molecular map of PCA (Gabriel et al. GigaScience 2020), identify further instances 
of rare supra-carcinoids, and characterise the molecular biology of PCA types. Finally, tumour map 
positions were used to perform archetype analysis (Hart et al. Nat Methods 2015) to uncover 
evolutionary trade-offs in cancer-specific tasks between tumour types.   

 
Conclusions   
While progress has been made in recent years in the molecular characterisation of PCA, there are 
many clinically-relevant questions which remain. These can be addressed by investigating all 
molecular layers, including whole-genome sequencing, that until now has been lacking in PCA. The 
lungNENomics project aims to address these important questions, and to improve the biological 
understanding of tumour development and progression in this exceedingly rare and understudied 
disease. 
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Integrative and comparative genomic
analyses identify clinically relevant pulmonary
carcinoid groups and unveil the supra-carcinoids
N. Alcala et al.#

The worldwide incidence of pulmonary carcinoids is increasing, but little is known about their

molecular characteristics. Through machine learning and multi-omics factor analysis,

we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35

atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers.

Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify

atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and

27%, respectively. We identify therapeutically relevant molecular groups of pulmonary car-

cinoids, suggesting DLL3 and the immune system as candidate therapeutic targets;

we confirm the value of OTP expression levels for the prognosis and diagnosis of these

diseases, and we unveil the group of supra-carcinoids. This group comprises samples with

carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC,

further supporting the previously proposed molecular link between the low- and high-grade

lung neuroendocrine neoplasms.
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According to the WHO classification from 20151 and
a recent IARC-WHO expert consensus proposal2,
pulmonary carcinoids are low-grade typical and

intermediate-grade atypical well-differentiated lung neuroendo-
crine tumours (LNETs) that belong to the group of lung neu-
roendocrine neoplasms (LNENs), which also includes the high-
grade and poorly differentiated small-cell lung cancer (SCLC) and
large-cell neuroendocrine carcinomas (LCNEC). Pulmonary
carcinoids are rare malignant lesions, annual incidence of which
has been increasing worldwide, especially at the advanced stages3.
Pulmonary carcinoids account for 1–2% of all invasive lung
malignancies: typical carcinoids exhibit good prognosis, although
10-23% metastasise to regional lymph nodes, resulting in a 5-year
overall survival rate of 82–100%. The prognosis is worse for
atypical carcinoids, with 40–50% presenting metastasis, reducing
the 5-year overall survival rate to 50%.

Contrary to pulmonary carcinoids, most of which are eligible
for upfront surgery at the time of diagnosis3, LCNEC and SCLC
require upfront aggressive, multimodal treatment for most of the
patients. Owing to these differences in clinical management and
prognosis, the accurate diagnosis of these diseases is critical.
However, there is still no consensus on the optimal approach for
their differential diagnosis;2 the current criteria, based on mor-
phological features and immunohistochemistry, are imperfect and
inter-observer variations are common, especially when separating
typical from atypical carcinoids4, as well as atypical carcinoids
from LCNEC in small biopsies5. Ki67 protein immune-reactivity
has been suggested as a good marker of prognosis in LNENs as a
whole, and for the differential diagnosis between carcinoids and
SCLC6,7, whereas this marker does not faithfully follow the
defining histological criteria of typical and atypical carcinoids4.
The difficulties in finding good markers to separate these diseases
might be due to the limited amount of comprehensive genomic
studies available for SCLC, LCNEC, and typical carcinoids, and
the complete lack of such studies for atypical carcinoids8. In
addition, such studies would also be needed to validate the recent
proposed molecular link between pulmonary carcinoids and
LCNEC9,10.

In this study, we provide a comprehensive overview of the
molecular traits of LNENs—with a particular focus on the
understudied atypical carcinoids—in order to identify the
mechanisms underlying the clinical differences between typical
and atypical carcinoids, to understand the suggested molecular
link between pulmonary carcinoids and LCNEC, and to find new
candidates for the diagnosis and treatment of these diseases.

Results
Data. We have generated new data (genome, exome, tran-
scriptome, and methylome) for 63 pulmonary carcinoids
(including 27 atypical) and 20 LCNEC. In order to perform
comparative analyses, we have reanalysed published data for 74
pulmonary carcinoids11, 75 LCNEC12, and 66 SCLC13,14. Taken
together, we have performed multi-omics integrative analyses on
116 pulmonary carcinoids (including 35 atypical), 75 LCNEC,
and 66 SCLC (Supplementary Fig. 1 and Supplementary Data 1).

Molecular groups of pulmonary carcinoids and LCNEC. We
performed an unsupervised analysis of the expression and
methylation data of the LNENs (i.e., 110 pulmonary carcinoids
and 72 LCNEC) using the Multi-Omics Factor Analysis imple-
mentation of the group factor analysis statistical framework
(Software MOFA)15 (MOFA LNEN; Fig. 1a and Supplementary
Figs. 2 and 3). We identified five latent factors explaining more
than 2% of the variance in at least one data set, and among them,
three latent factors provided consistent groups of samples with

similar expression and methylation profiles (i.e., clusters). MOFA
latent factors one (LF1) and two (LF2) explained a total of 45%
and 34% of the variance in methylation and expression, respec-
tively, and were both associated with survival (Supplementary
Fig. 4). Using consensus clustering on these two latent factors
(which explained most of the variation and thus carried most of
the biological signal; Supplementary Figs. 5–7 and Supplementary
Data 2–3), we identified three clusters, each of them enriched for
samples of one of the three histopathological types (Fig. 1a).
Cluster Carcinoid A was enriched for typical carcinoids (75%;
Fisher’s exact test p-value < 2.2 × 10−16); cluster Carcinoid B was
enriched for atypical carcinoids (54%; Fisher’s exact test p-value
< 2.2 × 10−16) and male patients (79%; Fisher’s exact test p-value
= 1.6 × 10−9); and cluster LCNEC included 92% of the histo-
pathological LCNEC (Fisher’s exact test p-value < 2.2 × 10−16).
Note that clustering based on LF1 to LF5, weighted by their
proportion of variance explained, leads to the exact same clusters
(Supplementary Fig. 8).

To assess whether the current histopathological classification
could be improved by the combination of molecular and
morphological characteristics, we undertook a machine-learning
(ML) analysis. To do so, we combined the predictions from two
independent random forest classifications, based on only-
expression or only-methylation data. Using two independent
models allowed the inclusion of samples for which only one of
these data sets was available, thus maximising the power of
subsequent analyses (Fig. 1b and Supplementary Fig. 9 for an
alternative analysis based on both ‘omic data sets simultaneously,
but restricted to fewer samples). In order to avoid overfitting the
data, we performed a leave-one-out cross-validation, with feature
filtering and normalisation learned from the training set and
applied to the test sample. To identify intermediate profiles, we
defined a prediction category (unclassified) for samples that had a
probability ratio between the two most probable classes close to
one. We present in Fig. 1b the results for a cutoff ratio of 1.5, and
show in Supplementary Fig. 10 the robustness of our results with
regard to this ratio. Ninety-six per cent of the carcinoids
predicted as typical by the ML were in cluster Carcinoid A
(Fig. 1a). Similarly, the majority of ML-predicted atypical
carcinoids (87%) belonged to cluster Carcinoid B.

We selected the ML-prediction groups with >10 samples
(gathering the unclassified samples in one single group) and
compared their overall survival using Cox’s proportional hazard
model (coloured groups in Fig. 1b). The machine learning trained
on the histopathology stratified atypical carcinoids into two
prognostic groups: the good-prognosis group (atypical reclassified
as typical, in pink in Fig. 1b, c) with a 10-year overall survival
similar to that of samples confirmed by ML as typical carcinoids
(in black in Fig. 1b, c; 88% and 89%, respectively; Wald test p-
value= 0.650); and the bad-prognosis group (atypical predicted
as atypical, in red in Fig. 1b, c) with a 10-year overall survival
similar to that of samples confirmed by ML as LCNEC (in blue in
Fig. 1b, c; 27% and 19% respectively; Wald test p-value= 0.574;
see also Supplementary Fig. 11). Machine-learning analyses based
on other features -combined expression and methylation data
(Supplementary Fig. 9), MOFA latent factors (Supplementary
Fig. 12A), and Principal component analyses (PCA) principal
components explaining more than 2% of the variance (Supple-
mentary Fig. 12B)- led to qualitatively similar results.

Atypical carcinoids with LCNEC molecular characteristics. Six
atypical carcinoids clustered with LCNEC in the MOFA LNEN
(supra-carcinoids; Fig. 1a). Consistent with this clustering, this
group displayed a survival similar to the other samples in the
LCNEC cluster (10-year overall survival of 33% and 19%,
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Fig. 1 Multi-omics (un)supervised analyses of lung neuroendocrine neoplasms. a Multi-omics factor analysis (MOFA) of transcriptomes and methylomes
of LNEN samples (typical carcinoids, atypical carcinoids, and LCNEC). Point colours correspond to the histopathological types; coloured circles correspond
to predictions of histopathological types by a machine learning (ML) algorithm (random forest classifier) outlined in b; filled coloured shapes represent the
three molecular clusters identified by consensus clustering. The density of clinical variables that are significantly associated with a latent factor (ANOVA
q-value < 0.05) are represented by kernel density plots next to each axis: histopathological type for latent factor 1, sex and histopathological type for latent
factor 2. b Confusion matrix associated with the ML predictions represented on a. The different colours highlight the prediction groups considered in the
survival analysis and the colours for machine learning are consistent between panel b and upper panel c. Black represents typical carcinoids predicted as
typical, pink represents atypical carcinoids predicted as typical, red represents atypical carcinoids predicted as atypical, and blue represents LCNEC
samples predicted as LCNEC. For the unclassified category, the most likely classes inferred from the ML algorithm are represented by coloured arcs (black
for typical, red for atypical, blue for LCNEC, and light grey for discordant methylation-based and expression-based predictions). c Kaplan–Meier curves of
overall survival of the different ML predictions groups (upper panel) and histopathological types (lower panel). Upper panel: colours of predicted groups
match panel b. Lower panel: black-typical, red-atypical, blue-LCNEC. Next to each Kaplan–Meier plot, matrix layouts represent pairwise Wald tests
between the reference group and the other groups, and the associated p-values; 0.01≤ p < 0.05, 0.001≤ p < 0.01, and p < 0.001 are annotated by one, two,
and three stars, respectively. Data necessary to reproduce the figure are provided in Supplementary Data 1
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respectively; Wald test p-value= 0.574; Fig. 2a). The observed
molecular link appears to be between supra-carcinoids and
LCNEC rather than with SCLC, as shown by PCA and MOFA
including expression data for 51 SCLC (Supplementary Figs. 6
and 13, respectively).

These samples originated from three different centres (two
from each), and included two previously published samples
(S01513 and S01522)11, implying that this observation is unlikely
to be the result of a batch effect. The limited number of supra-
carcinoids did not allow to explore aetiological links; however, it
is of note that one of them (LNEN005) belonged to a patient with
professional exposure to asbestos (which is known to cause
mesothelioma)16 (Table 1), and the tumour harboured a splicing
BAP1 somatic mutation (a gene frequently altered in mesothe-
lioma)17. This sample showed the highest mutational load
(37 damaging somatic mutations; Supplementary Data 4). Gene
set enrichment analyses (GSEA) of mutations in the hallmarks of
cancer gene sets18,19, showed a significant enrichment for the
hallmark evading growth suppressor (q-value= 0.0213; Fig. 2b
and Supplementary Data 5), while the hallmark genome
instability and mutation was significant only at the 10% false
discovery rate (FDR) threshold (q-value= 0.0970; Fig. 2b and
Supplementary Data 5). We had access to the Haematoxylin and
Eosin (H&E) stain for three of these supra-carcinoids, on which
the pathologists discarded misclassifications with LCNEC, SCLC,
or mesothelioma in the case of the asbestos-exposed BAP1-
mutated sample (Fig. 2c and Table 1).

While generally similar to LCNEC, and albeit based on small
numbers, the supra-carcinoids appeared to have nonetheless
some distinct genomic features based on genome-wide expression
and methylation profiles (Fig. 2d). Supra-carcinoids displayed
higher levels of immune checkpoint genes (both receptors and
ligands; Fig. 2e), and also harboured generally higher expression
levels of MHC class I and II genes (Fig. 2e and Supplementary
Fig. 14). Interestingly, the interferon-gamma gene—a prominent
immune-stimulator, in particular of the MHC class I and II genes
—also showed high-expression levels in these samples (Supple-
mentary Fig. 14). The differences in immune checkpoint gene
expression levels between groups were not explained by the
amount of infiltrating cells, as estimated by deconvolution of gene
expression data with software quanTIseq (Fig. 2f, left panel).
However, supra-carcinoids contained the highest levels of
neutrophils (greater than the 3rd quartile of the distributions of
neutrophils in the other groups; Fig. 2f, right panel). Permutation
tests showed that these levels were significantly higher than in
other carcinoid groups and in SCLC, but not than in LCNEC
(Supplementary Fig. 15). Concordantly, GSEA showed that
MOFA LNEN LF1 (separating LCNEC and supra-carcinoids
from the other carcinoids) was significantly associated with
neutrophil chemotaxis and degranulation pathways (Supplemen-
tary Data 6). By contrast, no such association was observed in the
MOFA performed only on carcinoids and SCLC samples
(Supplementary Figs. 6C and 13C and Supplementary Data 6).

Mutational patterns of pulmonary carcinoids. In a previous
study, mainly including typical carcinoids, we detected MEN1,
ARID1A, and EIF1AX as significantly mutated genes11. We also
found that covalent histone modifiers and subunits of the SWI/
SNF complex were mutated in 40% and 22.2% of the cases,
respectively. Genomic alterations in these genes and pathways
were also seen in the new samples included in this study (Fig. 3a,
Supplementary Fig. 16, and Supplementary Data 4). Apart from
the above-mentioned genes, ATM, PSIP1, and ROBO1 also
showed some evidence, among others, for recurrent mutations in
pulmonary carcinoids (Fig. 3a). In addition to point mutations

and small indels, the ARID2, DOT1L, and ROBO1 genes were also
altered by chimeric transcripts (Fig. 3b). MEN1 was also inacti-
vated by genomic rearrangement in a carcinoid sample
with a chromothripsis pattern affecting chromosomes 11 and 20
(Fig. 3c). The full lists of somatically altered genes, chimeric
transcripts, and genomic rearrangements are presented in Sup-
plementary Data 4, 7, and 8, respectively. Of note, MEN1
mutations were significantly associated with the atypical carcinoid
histopathological subtype (Fisher’s exact test p-value= 0.0096), as
well as MOFA LNEN LF2.

Altered pathways in pulmonary carcinoids. The third latent
factor from the MOFA LNEN accounted for 8% and 6% of the
variance in expression and methylation, respectively, but unlike
LF1 and LF2, LF3 was not associated with patient survival
(Supplementary Fig. 4). The molecular variation explained by LF3
appeared to capture different molecular profiles within cluster
Carcinoid A (Supplementary Fig. 13B). We therefore undertook
an additional MOFA restricted to pulmonary carcinoid samples
only (MOFA LNET; Fig. 4a and Supplementary Fig. 17). This
MOFA identified five latent factors that explained at least 2% of
the variance in one data set. As expected, the first two latent
factors of the MOFA LNET were highly correlated with LF2 and
LF3 from the MOFA LNEN, respectively, (Pearson correlation
>0.96; Supplementary Fig. 13B), and explained 41% and 35% of
the variance in methylation and expression, respectively. Inte-
grative consensus clustering using LF1 and LF2 of the MOFA
LNET identified three clusters (Supplementary Fig. 18): cluster
Carcinoid A1 and cluster Carcinoid A2, that together correspond
to the samples in cluster Carcinoid A of the MOFA LNEN, plus
the supra-carcinoids; and cluster Carcinoid B (as for the clus-
tering of LNEN samples, a clustering based on LF1-LF5 weighted
by their proportion of variance explained, led to the exact same
clusters; Supplementary Fig. 8). LF2 was associated with age, with
cluster Carcinoid A1 enriched for older patients ((60, 90]
years old) and cluster Carcinoid A2 enriched for younger patients
((15, 60] years old).

We applied GSEA to identify the pathways associated with the
different latent factors. We found significant associations with the
immune system and the retinoid and xenobiotic metabolism
pathways (Supplementary Data 6). Numerous Gene Ontology
(GO) terms and KEGG pathways were related to the immune
system, immune cell migration, and infectious diseases. The GO
terms and KEGG pathways related to immune cell migration
included leucocyte migration, chemotaxis, cytokines, and
interleukin 17 signalling. In particular, the expression of all
β-chemokines (including CCL2, CCL7, CCL19, CCL21, CCL22,
known to attract monocytes and dendritic cells)20 (Supplemen-
tary Data 6), and all CXC chemokines (such as IL8, CXCL1,
CXCL3, and CXCL5, known to attract neutrophils)21, were
positively correlated with MOFA LNEN LF1 (separating
pulmonary carcinoids from LCNEC) and negatively correlated
with MOFA LNET LF2 (separating clusters Carcinoid A1
and A2).

The different LNET clusters did not differ in their total
amounts of estimated proportions of immune cells, but they did
differ in their composition (Supplementary Fig. 19): cluster
Carcinoid A (particularly A1) was significantly enriched in
dendritic cells, and cluster Carcinoid B, in monocytes (Fig. 4b,
upper panel). As monocytes can differentiate into dendritic cells
in a favourable environment22, we assessed the levels of LAMP3
and CD1A dendritic-cells markers23, and found that samples in
cluster Carcinoid A1 presented high-expression levels of these
genes (Fig. 4b, lower panel), implying that this cluster was indeed
enriched for dendritic cells. We pursued this further by assessing
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the CD1A protein levels by immunohistochemistry (IHC) in an
independent series of pulmonary carcinoids, and found that 60%
of them (12 out of 20) were enriched in CDA1-positive dendritic
cells, confirming the presence of dendritic cells in a subgroup of
pulmonary carcinoids (Fig. 4c and Supplementary Data 9).

Regarding the retinoid and xenobiotic metabolism pathways
(e.g., elimination of drugs and environmental pollutants), the
main genes driving the correlation with MOFA latent factors
were the phase II enzymes involved in glucuronosyl-transferase
activity (Supplementary Data 6), but also the phase I cytochrome
P450 (CYP) proteins. These pathways were positively correlated
with MOFA LNEN LF2 (separating LNEN clusters A and B) and
negatively correlated with MOFA LNET LF1 (separating LNET
clusters A1 and A2 from cluster B). Indeed, we found that
samples in cluster Carcinoid B were characterised by high levels
of the CYP family of genes, and a very strong expression of
several UDP glucuronosyl-transferases UGT genes (median
FPKM= 4.6 in UGT2A3 and 28.1 in UGT2B genes; Fig. 4d),
which contrasts with the low levels in other carcinoids (median
FPKM= 0 for both UGT2A3 and UGT2B; Fig. 4d), LCNEC
(median FPKM= 0 and 1.2 for UGT2A3 and UGT2B; Supple-
mentary Fig. 20) and SCLC (median FPKM= 0 and 0.3 for
UGT2A3 and UGT2B; Supplementary Fig. 20).

Molecular groups of pulmonary carcinoids. We explored the
molecular characteristics of each cluster from the MOFA LNET
based on their core differentially expressed coding genes (core-
DEGs, the expression levels of which defined a given group of
samples), corresponding promoter methylation profiles (Fig. 5a
and Supplementary Data 10), and their somatic mutational pat-
terns (Figs. 3a and 4a). To achieve this goal, we computed the
DEGs in all pairwise comparisons between a focal group and the
other groups, and then defined core-DEGs as the intersection of
the resulting gene sets. We show in Supplementary Fig. 21 that
core-DEGs are almost exclusively a subset of the DEGs between
the focal group and samples from all other groups taken together.
We correlated the gene expression and promoter methylation
data of the core-DEGs to identify genes, which expression could

be mainly explained by their methylation patterns (Fig. 5a).
One of the top correlations was found for HNF1A and HNF4A
homeobox genes (Supplementary Fig. 22), which were strongly
downregulated in cluster Carcinoid A1 samples (Supplementary
Fig. 23). In addition, the promoter regions of these genes also
harboured core-DMPs (differentially methylated positions) of
cluster Carcinoid A1, indicating that their methylation profile is
specific of this cluster (Supplementary Data 11). These two genes
have been reported as having a role in the transcriptional reg-
ulation of ANGPTL3, CYP, and UGT genes24, and could thus
explain the differential expression of these genes between the
clusters. Samples in cluster Carcinoid A1 were also characterised
by high-expression levels of the delta like canonical Notch ligand
3 (DLL3, 75% with FPKM > 1) and its activator the achaete-scute
family bHLH transcription factor 1 (ASCL1) (Fig. 5a and Sup-
plementary Data 10), similar to SCLC and LCNEC (Fig. 5b);
however, the expression levels of NOTCH genes did not differ
between the different groups (Supplementary Fig. 24). The supra-
carcinoids were negative for DLL3 expression (Fig. 5b), and had
generally high-expression levels of NOTCH1-3 (Supplementary
Fig. 24). We additionally tested the DLL3 protein levels in the
aforementioned independent series of 20 pulmonary carcinoids
and found 40% (eight out of 20) with relatively high expression of
DLL3 (Fig. 4d and Supplementary Data 9), while in the
other 12 samples DLL3 was strikingly absent (Fig. 4d and Sup-
plementary Data 9). Furthermore, we found a correlation
between the protein levels of DLL3 and CD1A (Pearson test
p-value= 0.00034; Supplementary Fig. 25), providing additional
evidence for the existence of a DLL3+ CD1A+ subgroup of
carcinoids. Core-DEGs in cluster Carcinoid A2 included the
low levels of SLIT1 (slit guidance ligand 1; 97% with FPKM <
0.01), and ROBO1 (roundabout guidance receptor 1; 56% with
FPKM < 1) (Fig. 5a, b and Supplementary Data 10). This cluster
also contained the four samples with somatic mutations in the
eukaryotic translation initiation factor 1A X-linked (EIF1AX)
gene (Fig. 4a). Concordantly, samples with EIF1AX mutations
had significantly higher coordinates on the MOFA LNET LF2
(t-test p-value= 0.0342).

Table 1 Characteristics of supra-carcinoids

LNEN005 LNEN012 LNEN021 LNEN022 S01513 S01522

Classification
Histopathology Atypical Atypical Atypical Atypical Atypical Atypical
Morphological
characteristics

Carcinoid morph. 2 mitoses/2
mm2 No necrosis

Carcinoid morph. 2 mitoses/2
mm2 No necrosis

LCNEC morph. 4 mitoses/2
mm2 No necrosis

NA NA NA

Machine learning LCNEC LCNEC Unclassified Unclassified Atypical Unclassified
Clinical data
Sex Male Female Female Female Male Male
Age at diagnosis 80 70 83 58 58 63
TNM Stage IB IIIC IA1 IIB IIIA IV
Overall survival
(months)

144.6 111.7 29.8 36.1 59 7

Epidemiology
Smoking status Former NA NA NA Never Current
Other known
exposure

Asbestos NA NA NA NA NA

Multi-omics data
Data available WES, RNAseq, Epic 850K RNAseq Epic 850K Epic 850K WGS, RNAseq WES,

Epic 850K
Cluster
MOFA LNEN

LCNEC LCNEC LCNEC LCNEC LCNEC LCNEC

Cluster
MOFA LNET

Carcinoid A1 Carcinoid A1 Carcinoid A1 Carcinoid A1 Carcinoid A1 Carcinoid A1

Selected
mutated genes

JMJD1C, KDM5C, BAP1 NA NA NA DNAH17 TP53

Mean FPKM of IC
genesa

8.12 10.32 NA NA 3.15 NA

MKI67 FPKM 2.6 7.3 NA NA 1.9 NA

FPKM refers to Fragments Per Kilobase per Million reads. The median FPKM of immune checkpoint (IC) genes was calculated based on the genes included in Fig. 2e, excluding HLA genes because of
their very large expression levels
aIC genes median FPKM values for pulmonary carcinoids, LCNEC and SCLC are 1.0, 3.5, and 3.2, respectively
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As expected based on Fig. 4d, several UGT genes were core-
DEGs of cluster Carcinoid B (Fig. 5a). Also, accordingly with the
worse survival of patients in this cluster (Fig. 2a), these samples
were also characterised by the expression of angiopoietin like 3
(ANGPTL3, 90% with FPKM > 1), and the erb-b2 receptor
tyrosine kinase 4 (ERBB4, 67% with FPKM > 1) (Fig. 5b). This
cluster was also characterised by the universal downregulation of
orthopedia homeobox (OTP; 90% with FPKM < 1), and NK2
homeobox 1 (NKX2-1; 90% FPKM < 1) (Fig. 5b). Interestingly,
the SCLC-combined LCNEC sample (S00602) that clustered with
the pulmonary carcinoids in the MOFA LNEN (Fig. 1a) was the
only LCNEC in our series harbouring high-expression levels of
OTP (290.26 FPKM vs. 9.89 FPKM for the 2nd highest within
LCNEC, the median for LCNEC being 0.22 FPKM). UGT genes,
ANGPTL3, and ERBB4 were also core-DEGs of cluster B samples
when compared to LNEN clusters Carcinoid A and LCNEC
(Supplementary Data 12), which indicates that their expression
levels also significantly differed from that of LCNEC. Cluster
Carcinoid B included all observed MEN1 mutations, which is
consistent with the fact that samples with MEN1 mutations had
significantly lower coordinates on the MOFA LNET LF1 (t-test
p-value= 7 × 10−6; Fig. 4a). Nevertheless, mutations in this gene

did not explain the poorer prognosis of this group of samples
compared to other LNET (logrank p-value > 0.05; Supplementary
Fig. 26). To gain some insights into what might be driving the bad
prognosis of cluster Carcinoid B samples, we performed a GSEA
of mutations in hallmarks of cancer gene sets18,19; while clusters
Carcinoid A1 and A2 were not enriched for any hallmark of
cancer, cluster Carcinoid B was significantly enriched for genes
involved in evading growth suppressor, sustaining proliferative
signalling, and genome instability and mutation at the 5% FDR
(Fig. 5c). We also performed a Cox regression with elastic net
regularisation based on the core-DEGs of this cluster; the model
selected eight coding genes explaining the overall survival, OTP
being one of them (Fig. 5d and Supplementary Data 13). Further
supporting their prognostic value, we found that the expression of
four of these genes was significantly different between the good-
and the poor-prognosis atypical carcinoids based on the machine-
learning predictions (Fig. 1c, upper panel and Supplementary
Fig. 27).

Finally, we also checked the MKI67 expression levels in the
different molecular groups and found relatively low levels in the
clusters Carcinoids A1, A2, and B (78% with FPKM < 1) and high
levels in the supra-carcinoids (FPKM > 1 in the three samples). As
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Fig. 3 Mutational patterns of pulmonary carcinoids. a Recurrent and cancer-relevant altered genes found in pulmonary carcinoids by WGS and WES.
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0.001≤ p < 0.01, and p < 0.001 are annotated by one, two, and three stars, respectively. b Chimeric transcripts affecting the protein product of DOT1L
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the mRNA row represents the chimeric transcript, and the protein row represents the predicted fusion protein. c Chromotripsis case LNEN041, including an
inter-chromosomic rearrangement between genes MEN1 and SOX6. Upper panel: copy number as a function of the genomic coordinates on chromosomes
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Fig. 4 Multi-omics unsupervised analysis of lung neuroendocrine tumours. a Multi-omics factor analysis (MOFA) of transcriptomes and methylomes
restricted to LNET samples (pulmonary carcinoids). Design follows that of Fig. 1a; filled coloured shapes represent the three molecular clusters (Carcinoid
A1, A2, and B) identified by consensus clustering. The position of samples harbouring mutations significantly associated with a latent factor (ANOVA
q-value < 0.05) are highlighted by coloured triangles on the axes. b Upper panel: boxplots of the proportion of dendritic cells in the different molecular
clusters (Carcinoid A1, A2, and B) and the supra-carcinoids, estimated from transcriptomic data using quanTIseq (Methods). The permutation test q-value
range is given above each comparison: q-value < 0.001 is annotated by three stars. Lower panel: boxplots of the expression levels of LAMP3 (CDLAMP) and
CD1A. c DLL3 and CD1A immunohistochemistry of two typical carcinoids: case 6 (DLL3+ and CD1A+), and case 10 (DLL3- and CD1A-). Upper panels:
Hematoxylin & Eosin Saffron (H&E) stain. Middle panels: staining with CD1 rabbit monoclonal antibody (cl EP3622; VENTANA), where arrows show
positive stainings. Lower panels: Staining with DLL3 assay (SP347; VENTANA). d Expression levels of genes from the retinoid and xenobiotic metabolism
pathway—the most significantly associated with MOFA latent factor 1—in the different molecular clusters. Upper panel: schematic representation of the
phases of the pathway. Lower panel: boxplot of expression levels of CYP2C8 and CYP2C19 (both from the CYP2C gene cluster on chromosome 10),
UGT2A3, and the total expression of UGT2B genes (from the UGT2 gene cluster on chromosome 4), expressed in fragments per kilobase million (FPKM)
units. In all panels, boxplot centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or
the highest and lowest observation values if they extend no further than the 1.5-fold IQR. Data necessary to reproduce the figure are provided in
Supplementary Data 1, 4, 9, and in the European Genome-phenome Archive

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9

8 NATURE COMMUNICATIONS |         (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


b

a
Cluster Carcinoid A1 Cluster Carcinoid A2 Cluster Carcinoid B

2
1
0
–1
–2

Histopathology

Cluster LNET
Carcinoid A1

Carcinoid A2

Carcinoid B

Cluster LNEN

Carcinoid A

Carcinoid B

LCNEC

Methylation correlation

0.5 ≤ R2
 < 0.75   

R 2
 ≥ 0.75 

q > 0.05 or R 2
 < 0.5

c

S
up

ra
-c

a

LC
N

E
C

S
C

LC

BA
2

A
1

S
up

ra
-c

a

LC
N

E
C

S
C

LC

BA
2

A
1

S
up

ra
-c

a

LC
N

E
C

S
C

LC

BA
2

A
1

S
up

ra
-c

a

LC
N

E
C

S
C

LC

BA
2

A
1

1

0.1

≤0.01

10

100

1000

1

0.1

≤0.01

10

100

1000

G
en

e 
ex

pr
es

si
on

 (
F

P
K

M
)

1

0.1

≤0.01

10

100

1000

1

0.1

≤0.01

10

100

1000

1

0.1

≤0.01

10

100

1000

1

0.1

≤0.01

10

100

1000

1

0.1

≤0.01

10

100

1000

1

0.1

≤0.01

10

100

1000

d

E
xpression
z-score

Typical

Atypical

Carcinoid

ASCL1 SLIT1 ANGPTL3 OPT

DLL3 ROBO1 ERBB4 NKX2-1

Cluster LNEN
Cluster LNET

Histopathology

S
ur

vi
va

l p
ro

ba
bi

lit
y

LMX1A ZG16B

GABRA1 IL22RA1

C1orf87 GHSR

OTP BAIAP2L2

q-value
<0.05>0.05

Carcinoid A1* 

Carcinoid A2 

Carcinoid B

*without supra-ca samples

SCLC 
LCNEC

Avoiding immune
destruction 

Enabling replicative
immortality 

Deregulating cellular
energetics

Resisting
cell death

Activating
invasion & metastasis

Inducing
angiogenesis

Tumor promoting
inflammation 

ATM ERN1 PKD1 ROBO1

Sustaining
proliferative

signaling

Genome
instability

& mutantion

Evading
growth

suppressor

SMARCA2
TNFSF13B
ZFP36

PRDX3
PRKDC
PSMD7

CDKN1B

ATM
POLL
YY1

MEN1 (×7)
CDKN1B
HERC2

MEN1 (×7)
MCM10
NTRK3

DOT1L
DUSP22

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

p = 0.0029 p = 0.0079

p = 0.0055

p = 0.0016p = 0.0014

p = 0.0001p = 0.00017

p = 0.033

1000 200 300 1000 200 300

1000 200 300 1000 200 300

1000 200 300 1000

Months

200 300

1000 200 300 1000 200 300

ARID1A (×3)
MEN1 (×7)
MAP2K4

ATM

PKD1AXIN1
CDKN1B

11%

89%

High expression

Low expression
68%

32%

16%

14%

84% 86%

18%43%

82%

57%

89%

18%

11%

82%

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


expected, LCNECs and SCLCs carried high levels of this gene
(FPKM > 1 in 99% and 92% of the samples, respectively).
Although the levels of MKI67 for each of the clusters were
different, further analyses showed that MKI67 expression levels
alone were not able to accurately separate good- from poor-
prognosis pulmonary carcinoids (Supplementary Fig. 11B, C).

An overview of the different molecular groups of pulmonary
carcinoids and their most relevant characteristics is displayed in
Fig. 6.

Discussion
Lung neuroendocrine neoplasms are a heterogeneous group of
tumours with variable clinical outcomes. Here, we characterised
and contrasted their molecular profiles through integrative ana-
lysis of transcriptome and methylome data, using both machine-
learning (ML) techniques and multi-omics factor analyses
(MOFA). ML analyses showed that the molecular profiles could
distinguish survival outcomes within patients with atypical car-
cinoid morphological features, splitting them into patients with
good typical-carcinoid-like survival and patients with a clinical
outcome similar to LCNEC. Overall, out of the 35 histopatholo-
gically atypical carcinoids, ML reclassified 12 into the typical
category.

Unsupervised MOFA and subsequent gene-set enrichment
analyses unveiled the immune system and the retinoid and
xenobiotic metabolism as key deregulated processes in pulmonary
carcinoids, and identified three molecular groups—clusters—with
clinical implications (Fig. 6). The first group (cluster A1) pre-
sented high infiltration by dendritic cells, which are believed to
promote the recruitment of immune effector cells resulting in a
strongly active immunity25. Samples in cluster A1 showed over-
expression of ASCL1 and DLL3. The transcription factor ASCL1
is a master regulator that induces neuronal and neuroendocrine
differentiation. It regulates the expression of DLL3, which
encodes an inhibitor of the Notch pathway26. Overexpression of
ASCL1 and DLL3 is a characteristic of the SCLC of the classic
subtype26 and of type-I LCNEC12. We validated the expression of
DLL3 in an independent series of 20 pulmonary carcinoids
assessed by immunohistochemistry (IHC; 40% positive). The fact
that we found a correlation between the protein levels of DLL3
and CD1A (a marker of dendritic cells also assessed by IHC in
this series; 60% positive) provides orthogonal evidence to support
the existence of this molecular group. Phase I trials have provided
evidence for clinical activity of the anti-DLL3 humanised
monoclonal antibody in high–DLL3-expressing SCLCs and
LCNECs27, and additional clinical trials are ongoing in other
cancer types.

The second group (cluster A2) harboured recurrent somatic
mutations in EIF1AX, and showed downregulation of the SLIT1

and ROBO1 genes. SLIT and ROBO proteins are known to be
axon-guidance molecules involved in the development of the
nervous system28, but the SLIT/ROBO signalling has also been
associated with cancer development, progression, and metastasis.
Pulmonary neuroendocrine cells (PNEC) represent 1% of the
total lung epithelial cell population29, they reside isolated
(Kultchinsky cells) or in clusters named neuroepithelial bodies
(NEBs), and are believed to be the cell of origin of most lung
neuroendocrine neoplasms30. In the normal lung, it has been
shown that ROBO1/2 are expressed, exclusively, in the PNECs,
and that the SLIT/ROBO signalling is required for PNEC
assembly and maintenance in NEBs31. In cancer, this pathway
mainly suppresses tumour progression by regulating invasion,
migration, and apoptosis, and therefore, is often downregulated
in many cancer types28. More specifically, the SLIT1/ROBO1
interaction can inhibit cell invasion by inhibiting the SDF1/
CXCR4 axis, and can attenuate cell cycle progression by
destruction of β-catenin and CDC4228. Potential clinical avenues
to this finding exist, especially the ongoing development of
CXCR4 inhibitors.

The third molecular group (cluster B) was enriched in
monocytes and depleted of dendritic cells, and had the worst
median survival. Even in the presence of T cell infiltration, this
immune contexture suggests an inactive immune response,
dominated by monocytes and macrophages with potent immu-
nosuppressive functions, and almost devoid of the most potent
antigen-presenting cells, dendritic cells, suggesting dendritic cell-
based immunotherapy as a therapeutic option for this group of
samples32. Cluster B was also characterised by recurrent somatic
mutations in MEN1, the most frequently altered gene in pul-
monary carcinoids and pancreatic NETs33, which is in line with
the common embryologic origin of pancreas and lung.MEN1 was
inactivated by genomic rearrangement due to a chromothripsis
event affecting chromosomes 11 and 20 in one of our samples.
This observation, together with two additional reported cases
involving chromosomes 2, 12, and 1311, and chromosomes 2, 11,
and 2034, respectively, suggest that chromothripsis is a rare but
recurrent event in pulmonary carcinoids. Interestingly, MEN1
mutations did not have a clear prognostic value in our series.
Regarding the above-mentioned deregulation of the retinoid and
xenobiotic metabolism in pulmonary carcinoids, samples in
cluster B presented high levels of UGT and CYP genes. In line
with previous studies35,36, these samples also harboured low levels
of OTP, which gene expression levels were correlated with sur-
vival in the ML predictions. High levels of ANGPTL3 and ERBB4
were also detected in this group of samples, representing candi-
date therapeutic opportunities. ANGPTL3 is involved in new
blood vessel growth and stimulation of the MAPK pathway37.
This protein has been found aberrantly expressed in several types

Fig. 5 Molecular groups of pulmonary carcinoids. a Heatmaps of the expression of core differentially expressed genes of each molecular cluster, i.e., genes
that are differentially expressed in all pairwise comparisons between a focal cluster and the other clusters. Green bars at the right of each heatmap indicate
a significant negative correlation with the methylation level of at least one CpG site from the gene promoter region. The colour scale depends on the range
of q-value (q) and squared correlation estimate (R²) of the correlation test. b Boxplots of the expression levels of selected cancer-relevant core genes, in
fragment per kilobase million (FPKM) units, where centre line represents the median and box bounds represent the inter-quartile range (IQR). The
whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. c Characteristic hallmarks of
cancer in each molecular cluster (Carcinoid A1 without the supra-carcinoids, A2, and B), LCNEC, and SCLC. Coloured concentric circles correspond to the
molecular clusters. For each cluster, dark colours highlight significantly enriched hallmarks (Fisher’s exact test q-value < 0.05). The mutated genes
contributing to a given hallmark are listed in the boxes. Recurrently mutated genes are indicated in brackets by the number of samples harbouring a
mutation. d Survival analysis of pulmonary carcinoids based on the expression level of eight core genes of cluster Carcinoid B. The genes were selected
using a regularised GLM on expression data. For each gene, coloured lines correspond to the Kaplan–Meier curve of overall survival for individuals with a
high (green) and low (orange) expression level of this gene. Cutoffs for the two groups were determined using maximally selected rank statistics
(Methods). The percentage of samples in each group is represented above each Kaplan–Meier curve and the logrank test p-value is given in bottom right
for each gene. Data necessary to reproduce the figure are provided in Supplementary Data 5, 10, and in the European Genome-phenome Archive
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of human cancers37. Similarly, overexpression of the epidermal
growth factor receptor ERBB4, which induces a variety of cellular
responses, including mitogenesis and differentiation, has also
been associated with several cancer types38,39.

For many years, it has been widely accepted that the lung well-
differentiated NETs (typical and atypical carcinoids) have unique
clinico-histopathological traits with no apparent causative rela-
tionship or common genetic, epidemiologic, or clinical traits with
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the lung poorly differentiated SCLC and LCNEC3. While mole-
cular studies have sustained this belief for pulmonary carcinoids
vs. SCLC11,13,14, the identification of a carcinoid-like group of
LCNECs10,12, the recent observation of LCNEC arising within a
background of pre-existing atypical carcinoid40, and a recent
proof-of-concept study supporting the progression from pul-
monary carcinoids to LCNEC and SCLC9, suggest that the
separation between pulmonary carcinoids and LCNEC might be
more subtle than initially thought, at least for a subset of patients.
Our study supports the suggested molecular link between pul-
monary carcinoids and LCNEC, as we have identified a subgroup
of atypical carcinoids, named supra-carcinoids, with a clear car-
cinoid morphological pattern but with molecular characteristics
similar to LCNEC. In our series, the proportion of supra-
carcinoids was in the order of 5.5% (six out of 110 pulmonary
carcinoids with available expression/methylation data); however,
considering the intermediate phenotypes observed in the MOFA
LNEN, the exact proportion would need to be confirmed in larger
series. We found high estimated levels of neutrophil infiltration in
the supra-carcinoids. For both supra-carcinoids and LCNEC (but
not SCLC), the pathways related to neutrophil chemotaxis and
degranulation, were also altered. Neutrophil infiltration may act
as immunosuppressive cells, for example through PD-L1
expression41. Indeed, the supra-carcinoids also presented levels
of immune checkpoint receptors and ligands (including PDL1
and CTLA4) similar—or higher—than those of LCNEC and
SCLC, as well as upregulation of other immunosuppressive genes
such as HLA-G, and interferon gamma that is speculated to
promote cancer immune-evasion in immunosuppressive
environments42,43. If confirmed, this would point to a therapeutic
opportunity for these tumours since strategies aiming at
decreasing migration of neutrophils to tumoral areas, or
decreasing the amount of neutrophils have shown efficacy in
preclinical models44. Similarly, immune checkpoint inhibitors,
currently being tested in clinical trials, might also be a therapeutic
option for these patients.

Overall, although preliminary, our data suggest that supra-
carcinoids could be diagnosed based on a combination of
morphological features (carcinoid-like morphology, useful for the
differential diagnosis with LCNEC/SCLC) and the high expres-
sion of a panel of immune checkpoint (IC) genes (LCNEC/SCLC-
like molecular features, useful for the differential diagnosis with
other carcinoids); the levels of IC genes, such as PD-L1, VISTA,
and LAG3, could also be used to drive the therapeutic decision for
patients harbouring a tumour belonging to this subset of very
aggressive carcinoids. Nevertheless, due to the very low number
of supra-carcinoids identified so far (n= 6), follow-up studies are
warranted to comprehensively characterise these tumours from
pathological and molecular standpoints, to evaluate the immune
cell distribution, and to establish if the diagnosis of these supra-
carcinoids can be undertaken in small biopsies. Finally, the cur-
rent classification only recognises the existence of grade-1 (typi-
cal) and grade-2 (atypical) well-differentiated lung NETs, while
the grade-3 would only be associated with the poorly differ-
entiated SCLC and LCNEC; however, in the pancreas, stomach
and colon, the group of well-differentiated grade-3 NETs are well
known and broadly recognised45. Whether these supra-carcinoids
constitute a separate entity that may be the equivalent in the lung
of the gastroenteropancreatic, well-differentiated, grade-3 NETs
will require further research.

In summary, this study provides comprehensive insights into
the molecular characteristics of pulmonary carcinoids, especially
of the understudied atypical carcinoids. We have identified three
well-characterised molecular groups of pulmonary carcinoids
with different prognoses and clinical implications. Finally, the
identification of supra-carcinoids further supports the already

suggested molecular link between pulmonary carcinoids and
LCNEC that warrants further investigation.

Methods
Sample collection. All new specimens were collected from surgically resected
tumours, applying local regulations and rules at the collecting site, and including
patient consent for molecular analyses as well as collection of de-identified data,
with approval of the IARC Ethics Committee. These samples underwent an
independent pathological review. For the typical carcinoids and LCNEC, on which
methylation analyses were performed, the DNA came from the samples included in
already published studies4,11–14,35, for which the pathological review had already
been done.

Clinical data. Collected clinical data included age (in years), sex (male or female),
smoking status (never smoker, former smoker, passive smoker, and current smo-
ker), Union for International Cancer Control/American Joint Committee on
Cancer stage, professional exposure, and survival (calculated in months from
surgery to last day of follow-up or death). These data were merged with that from
Fernandez-Cuesta et al.11, George et al.12, and George et al.14. In order to improve
the power of the statistical analyses, we regrouped some levels of variables that had
few samples. Age was discretized into three categories ((15, 40], (40, 60], and (60,
90] years), Union for International Cancer Control stages were regrouped into four
categories (I, II, III, IV), and smoking status was regrouped into two categories
(non-smoker, that includes never smokers and passive smokers, and smoker, that
includes current and former smokers). In addition, one patient (S02236) that was
originally classified as male was switched to female based on its concordant whole-
exome, transcriptome, and methylome data; and one patient (LNEN028) for whom
no sex information was available was classified as male based on its methylation
data (Supplementary Fig. 28; see details of the methods used in the DNA
sequencing, expression, and methylation sections of the methods), because we had
no other data type for this sample. Note that two SCLC samples from George
et al.14 displayed Y chromosome expression patterns discordant with their clinical
data (S02249 and S02293; Supplementary Fig. 28B), but because we did not per-
form any analysis of SCLC samples that used sex information, this did not have any
impact on our analyses. See Supplementary Data 1 for the clinical data associated
with the samples.

We assessed the associations between clinical variables—a batch variable
(sample provider), the main variable of interest (histopathological type), and
important biological covariables (sex, age, smoking status, and tumour stage)—
using Fisher’s exact test, adjusting the p-values for multiple testing. Using samples
from all histopathological types (typical and atypical carcinoids, LCNEC, and
SCLC), we found that the sample provider was significantly associated with the
histopathological type (Supplementary Fig. 29A). Indeed, the 20 carcinoids from
one of the providers (provider 1) are all atypical carcinoids. Nevertheless, because
there are also seven atypical carcinoids from a second provider and five from a
third one, variables provider and histopathological type are not completely
confounded and we could check for batch effects in the following molecular
analysis by making sure that the molecular profiles of atypical carcinoids from
provider 1 overlap with that from the two other providers. The histopathological
type was significantly associated with all other variables (Supplementary Fig. 29A,
B, and C).

Pathological review. Some of the samples included in this manuscript had already
undergone a Central Pathological Review in the context of other published studies,
so we used the classifications from the supplementary tables of the corresponding
manuscripts4,11,12,14,35. For the new ones, an H&E (hematoxylin and eosin) stain
from a representative FFPE block was collected for all tumours for pathological
review. All tumours were classified according to the 2015 WHO classification by
three independent pathologists (E.B., B.A.A., and S.L.). An H&E stain was also
performed in order to assess the quality of the frozen material used for molecular
analyses and to confirm that all frozen samples contained at least 70% of
tumour cells.

Immunohistochemistry. FFPE tissue sections (3 µm thick) from 20 atypical and
typical carcinoids were deparaffinized and stained with the Ventana DLL3 (SP347)
assay, UltraView Universal DAB Detection Kit (Ventana Medical Systems and
Amplification Kit (Ventana Medical Systems—Roche) on Ventana ULTRA auto-
stainer (Ventana, Roche, Meylan, France), and with the CD1 rabbit monoclonal
antibody (cl EP3622) (Ventana). The positivity of DLL3 was defined by the per-
centage of tumour cells exhibiting a cytoplasmic staining, whatever the intensity.
The positivity of CD1A was defined by the percentage of the total surface of the
tumour exhibiting a membrane staining with 1 corresponding to less than 1%, 2 to
a percentage between 1 and 5%, and 3 to greater than 5%. Results are presented
in Supplementary Data 9 and representative slides are shown in Fig. 4c.

Statistical analyses. All tests involving multiple comparisons were adjusted using
the Benjamini–Hochberg procedure controlling the false discovery rate46 using the
p.adjust R function (stats package version 3.4.4). All tests were two-sided. Also, a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9

12 NATURE COMMUNICATIONS |         (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


summary of the statistics associated with survival analyses is provided in Supple-
mentary Data 14.

Survival analysis. We performed survival analysis using Cox’s proportional
hazard model; we assessed the significance of the hazard ratio between the refer-
ence and the other levels using Wald tests, and assessed the global significance of
the model using the logrank test statistic (R package survival v. 2.41-3).
Kaplan–Meier and forest plots were drawn using R package survminer (v. 0.4.2).
Note that three LCNEC samples from George et al.14 had missing survival censor
information and were thus excluded from the analysis (samples S01580, S01581,
and S01586).

DNA extraction. Samples included were extracted using the Gentra Puregene
tissue kit 4g (Qiagen, Hilden, Germany), following the manufacturer's instructions.
All DNA samples were quantified by the fluorometric method (Quant-iT Pico-
Green dsDNA Assay, Life Technologies, CA, USA), and assessed for purity by
NanoDrop (Thermo Scientific, MA, USA) 260/280 and 260/230 ratio measure-
ments. DNA integrity of Fresh Frozen samples was checked by electrophoresis in a
1.3% agarose gel.

RNA extraction. Samples included were extracted using the Allprep DNA/RNA
extraction kit (Qiagen, Hilden, Germany), following manufacturer's instructions.
All RNA samples were treated with DNAse I for 15 min at 30 °C. RNA integrity of
frozen samples was checked with Agilent 2100 Electrophoresis Bioanalyser system
(Agilent Biotechnologies, Santa Clara, CA95051, United States) using RNA 6000
Nano Kit (Agilent Biotechnologies).

Whole-genome sequencing (WGS). Whole-genome sequencing was performed
on three fresh frozen pulmonary carcinoids and matched-blood samples by the
Centre National de Recherche en Génomique Humaine (CNRGH, Institut de
Biologie François Jacob, CEA, Evry, France). After a complete quality control,
genomic DNA (1 µg) has been used to prepare a library for whole-genome
sequencing, using the Illumina TruSeq DNA PCR-Free Library Preparation Kit
(Illumina Inc., CA, USA), according to the manufacturer's instructions. After
normalisation and quality control, qualified libraries have been sequenced on a
HiSeqX5 platform from Illumina (Illumina Inc., CA, USA), as paired-end 150 bp
reads. One lane of HiSeqX5 flow cell has been produced for each sample, in order
to reach an average sequencing depth of 30x for each sample. Sequence quality
parameters have been assessed throughout the sequencing run and standard
bioinformatics analysis of sequencing data was based on the Illumina pipeline to
generate fatsq files for each sample.

Whole-exome sequencing (WES). Whole-exome sequencing was performed on
16 fresh frozen atypical carcinoids in the Cologne Centre for Genomics. Exomes
were prepared by fragmenting 1 μg of DNA using sonication technology (Bior-
uptor, Diagenode, Liège, Belgium) followed by end repair and adapter ligation
including incorporation of Illumina TruSeq index barcodes on a Biomek FX
laboratory automation workstation from Beckman Coulter (Beckman Coulter,
Brea, CA, USA). After size selection and quantification, pools of five libraries each
were subjected to enrichment using the SeqCap EZ v2 Library kit from NimbleGen
(44Mb). After validation (2200 TapeStation; Agilent Technologies, CA, USA), the
pools were quantified using the KAPA Library Quantification kit (Peqlab, Erlan-
gen, Germany) and the 7900HT Sequence Detection System (Applied Biosystems,
Waltham, MA, USA), and subsequently sequenced on an Illumina HiSeq
2000 sequencing instrument using a paired-end 2 × 100 bp protocol and an allo-
cation of one pool with 5 exomes/lane. The expected average coverage was
approximately 120x after removal of duplicates (11 GB).

Targeted sequencing. Targeted sequencing was performed on the same 16 fresh
frozen atypical carcinoids and 13 matched-normal tissue for the samples with
enough DNA. Three sets of primers covering 1331 amplicons of 150–200 bp were
designed with the QIAGEN GeneRead DNAseq custom V2 Builder tool on
GRCh37 (gencode version 19). Target enrichment was performed using the
GeneRead DNAseq Panel PCR Kit V2 (QIAGEN) following a validated in-house
protocol (IARC). The multiplex PCR was performed with six separated primers
pools [(1) 1 pool covering 786 amplicons, (2) 4 pools covering 498 amplicons, and
(3) 1 pool covering 47 amplicons]. Per pool, 20 ng (1) or 10 ng (2 and 3) of DNA
were dispensed and air-dried (only 2 and 3). Subsequently 11 µL (1) or 5 µL (2 and
3) of the PCR mix were added [containing 5.5 µL (1) or 2.5 µL (2 and 3) Primer
mix pool (2x), 2.2 µL (1) or 1 µL (2 and 3) PCR Buffer (5x), 0.73 µL (1) or 0.34 µL
(2 and 3) HotStar Taq DNA Polymerase (6 U/µL) and 0.57 µL (1) or 1.16 µL (2
and 3) H2O] and the DNA were amplified in a 96-well-plate as following: 15 min at
95 °C; 25 (1), 21 (2), or 23 (3) cycles of 15 s at 95 °C and 4min at 60 °C; and 10 min
at 72 °C. For each sample, amplified PCR products were pooled together, purified
using 1.8x volume of SeraPure magnetic beads (prepared in-house following
protocol developed by Faircloth & Glenn, Ecol. And Evol. Biology, Univ. of
California, Los Angeles) (1) or NucleoMag® NGS Clean-up from Macherey-Nagel
(2 and 3) and quantified by Qubit DNA high-sensitivity assay kit (Invitrogen

Corporation). One-hundred nanograms of purified PCR product (6 µL) were used
for the library preparation with the NEBNext Fast DNA Library Prep Set (New
England BioLabs) following an in-house validated protocol (IARC). End repair was
performed [1.5 µL of NEBNext End Repair Reaction Buffer, 0.75 µL of NEBNext
End Repair Enzyme Mix, and 6.75 µL of H2O] followed by ligation to specific
adapters and in-house prepared individual barcodes (Eurofins MWG Operon,
Germany) [4.35 µL of H2O, 2.5 µL of T4 DNA Ligase Buffer for Ion Torrent, 0.7 µL
of Ion P1 adaptor (double-stranded), 0.25 µL of Bst 2.0 WarmStart DNA Poly-
merase, 1.5 µL of T4 DNA ligase, and 0.7 µL of in-house barcodes]. Bead pur-
ification of 1.8x was applied to clean libraries and 100 ng of adaptator ligated DNA
were amplified with 15 µL of Master Mix Amplification [containing 1 µL of Pri-
mers, 12.5 µL of NEBNext High-Fidelity 2x PCR Master Mix, and 1.5 µL of H2O].
Pooling of libraries was performed equimolarly and loaded on a 2% agarose gel for
electrophoresis (220 V, 40 min). Using the GeneClean™ Turbo kit (MP Biomedicals,
USA) pooled DNA libraries were recovered from selected fragments of 200–300 bp
in length. Libraries quality and quantity were assessed using Agilent High Sensi-
tivity DNA kit on the Agilent 2100 Bioanalyzer on-chip electrophoreses (Agilent
Technologies). Sequencing of the libraries was performed on the Ion TorrentTM

Proton Sequencer (Life Technologies Corp) aiming for deep coverage (> 250x),
using the Ion PITM Hi-QTTM OT2 200 Kit and the Ion PITM Hi-QTM Sequencing
200 Kit with the Ion PITM Chip Kit v3 following the manufacturer’s protocols.

DNA data processing. WGS and WES reads mapping on reference genome
GRCh37 (gencode version 19) were performed using our in-house workflow
(https://github.com/IARCbioinfo/alignment-nf, revision number 9092214665).
This workflow is based on the nextflow domain-specific language47 and consists of
three steps: reads mapping (software bwa version 0.7.12-r1044)48, duplicate
marking (software samblaster, version 0.1.22)49, and reads sorting (software
sambamba, version 0.5.9)50. Reads mapping for the targeted sequencing data was
performed using the Torrent Suite software version 4.4.2 on reference genome
hg19. Local realignment around indels was then performed for both using software
ABRA (version 0.97bLE)51 on the regions from the bed files provided by Agilent
(SeqCap_EZ_Exome_v2_probe-covered.bed) and QIAGEN, respectively, for the
WES and targeted sequencing data. Consistency between sex reported in the
clinical data and WES data was assessed by computing the total coverage on X and
Y chromosomes (Supplementary Fig. 28A).

Variant calling and filtering on DNA.WES data: We re-performed variant calling
for all typical and atypical carcinoid WES, including already published data, in
order to remove the possible cofounding effect of variant calling in the subsequent
molecular characterisation of carcinoids. Software Needlestack v1.1 (https://github.
com/IARCbioinfo/needlestack)52 was used to call variants. Needlestack is an ultra-
sensitive multi-sample variant caller that uses the joint information from multiple
samples to disentangle true variants from sequencing errors. We performed two
separate multi-sample variant callings to avoid technical batch effects: (1) The 16
WES atypical carcinoids newly sequenced in this study were analysed together with
64 additional WES samples sequenced using the same protocol from another study
in order to increase the accuracy of Needlestack to estimate the sequencing error
rate; (2) The 15 WES LNET (ten typical and five atypical carcinoids) previously
analysed (Fernandez-Cuesta et al.)11 were reanalysed with their matched-normal.
For both variant callings, we used default software parameters except for the
minimum median coverage to consider a site for calling, the minimum mapping
quality, and the SNV and INDEL strand bias13 threshold (they were set to 20, 13, 4,
and 10, respectively). Annotation of resulting variant calling format (VCF) files was
then performed with ANNOVAR (2018Aprl16)53 using the PopFreqAll (maximum
frequency over all populations in ESP6500, 1000G, and ExAC germline databases),
COSMIC v84, MCAP, REVEL, SIFT, and Polyphen (dbnsfp30a) databases.

We performed the same variant filtering after each of the two variant callings,
based on several stringent criteria. First, we only retained variants that have never
been observed in germline databases or present at low frequency (≤ 0.001) but
already reported as somatic in the COSMIC database. Second, we only retained
variants that were in coding regions and that had an impact on expressed proteins:
we filtered out silent, non-damaging single nucleotide variants (based on MCAP,
REVEL, SIFT, or Polyphen2 databases) and variants present in non-expressed
genes (mean and median FPKM < 0.1 over all carcinoid tumours). Additionally, for
calling (2), we re-assessed the somatic status of variants reported by Needlestack in
light of possible contamination errors. Indeed, Needlestack is a very sensitive caller
and will sometimes detect low allelic fraction variants in normal tissue that actually
come from contamination by tumour cells. In such cases the variant is found in
both matched samples and is reported as germline, but we still considered a variant
as somatic if its allelic fraction in the normal tissue was at least five times lower
than the allelic fraction observed in the tumour.

Targeted sequencing data: Software Needlestack was also used to call variants on
targeted sequencing data from 16 atypical carcinoids and their matched-normal
tissue. We performed the calling with default parameters except for the phred-
scaled q-value and minimum median coverage to consider a site (20 and 10,
respectively). These parameters were decreased compared to WES variants calling
because we wanted a larger sensitivity in the validation set than in the discovery set.
The annotation procedure was the same as for WES data. No other filters
were used.
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Validation: For both previously published data and data generated in this study,
we only report somatic mutations that were validated using a different technique:
targeted sequencing, RNA sequencing (see below for variant calling in RNA-seq
data), or Sanger sequencing. Results are presented Supplementary Data 4.

Structural variant calling. Somatic copy number variations (CNVs) were called
from WGS data using an in-house pipeline (software WGinR, available at https://
github.com/aviari/wginr) that consists of three main steps. First, the dependency
between GC content and raw read count is modelled using a generalised additive
smoothing model with two nested windows in order to catch short and long
distance dependencies. The model is computed on a subset of human genome
mappable regions defined by a narrow band around the mode of binned raw counts
distribution. This limits the incorporation of true biological signal (losses and
gains) by selecting only regions with (supposedly) the same ploidy. In a second
step, we collect heterozygous positions in the matched-normal sample and GC-
corrected read counts (RC) and alleles frequencies (AF) at these positions are used
to estimate the mean tumour ploidy and its contamination by normal tissue. This
ploidy model is then used to infer the theoretical absolute copy number levels in
the tumour sample. In the third step, a simultaneous segmentation of RC and AF
signals (computed on all mappable regions) is performed using a bivariate Hidden
Markov Model to generate an absolute copy number and a genotype estimate for
each segment.

Somatic structural variants (SV) were identified using an in-house tool
(crisscross, available at https://github.com/anso-sertier/crisscross) that uses WGS
data and two complementary signals from the read alignments: (a) discordant pair
mapping (wrong read orientation or incorrect insert-size) and (b) soft-clipping
(unmapped first or last bases of reads) that allows resolving SV breakpoints at the
base pair resolution. A cluster of discordant pairs and one or two clusters of soft-
clipped reads defined an SV candidate: the discordant pairs cluster defined two
associated regions, possibly on different chromosomes and the soft-clipped reads
cluster(s), located in these regions, pinpointed the potential SV breakpoint
positions. We further checked that the soft-clipped bases at each SV breakpoint
were correctly aligned in the neighbourhood of the associated region. SV events
were then classified as germline or somatic depending on their presence in the
matched-normal sample. Results are presented as Supplementary Data 8 and one
sample is highlighted in Fig. 3c.

Gene-set enrichment analysis of somatic mutations. Gene-set enrichment for
somatic mutations was assessed independently for each set of Hallmark of cancer
genes18 using Fisher’s exact test. We built the contingency tables used as input of
the test taking into account genes with multiple mutations and used the fisher.test
R function (stats package version 3.4.4). We also included validated mutations (we
removed silent and intron/exon mutations) reported in SCLC13. In each group the
p-values given by Fisher’s exact test performed for all Hallmarks were adjusted for
multiple testing. Supplementary Data 5 lists the altered hallmarks, including the
mutated genes and the associated q-value for each group, as well as the mutated
genes for each hallmarks present in each supra-carcinoid, cluster LNET, LCNEC,
and SCLC samples.

We performed several robustness analyses to assess the validity of our results, in
particular with regards to outlier samples/genes that would have a high leverage on
the statistical results, i.e., that would alone drive the significance of a particular
hallmark. First, we assessed the leverage of each individual sample using a jackknife
procedure (i.e., for each sample, we performed the GSE test after removing this
sample). Second, we assessed the leverage of each gene using a jackknife procedure
(i.e., for each gene, we performed the GSE test without this gene). We observed that
when we removed sample LNEN010 from the cluster LNET B, the sustaining
proliferative signalling hallmark enrichment became non-significant at the 0.05
false discovery rate threshold, but was still significant at the 10% threshold (q-value
= 0.075; Supplementary Data 3). Similarly, we observed that for several SCLC
samples, once the sample was removed, the deregulating cellular energetics and
inducing angiogenesis hallmarks became significant at the 0.05 false discovery rate
threshold (Supplementary Data 5). For supra-carcinoids samples, we performed
GSE for each sample individually. The code used for the gene set enrichment
analyses on somatic mutations (Hallmarks_of_cancer_GSEA.R) is available in the
Supplementary Software file 1 and the associated results are reported in
Supplementary Data 5.

RNA sequencing. RNA sequencing was performed on 20 fresh frozen atypical
carcinoids in the Cologne Centre for Genomics. Libraries were prepared using the
Illumina® TruSeq® RNA sample preparation Kit. Library preparation started with
1 µg total RNA. After poly-A selection (using poly-T oligo-attached magnetic
beads), mRNA was purified and fragmented using divalent cations under elevated
temperature. The RNA fragments underwent reverse transcription using random
primers. This is followed by second strand complementary DNA (cDNA) synthesis
with DNA Polymerase I and RNase H. After end repair and A-tailing, indexing
adapters were ligated. The products were then purified and amplified (14 PCR
cycles) to create the final cDNA libraries. After library validation and quantification
(Agilent 2100 Bioanalyzer), equimolar amounts of library were pooled. The pool
was quantified by using the Peqlab KAPA Library Quantification Kit and the

Applied Biosystems 7900HT Sequence Detection System. The pool was sequenced
by using an Illumina TruSeq PE Cluster Kit v3 and an Illumina TruSeq SBS Kit v3-
HS on an Illumina HiSeq 2000 sequencer with a paired-end (101x7x101 cycles)
protocol.

RNA data processing. The 210 raw reads files (89 carcinoids, 69 LCNEC, 52
SCLC) were processed in three steps using the RNA-seq processing workflow based
on the nextflow language47 and accessible at https://github.com/IARCbioinfo/
RNAseq-nf (revision da7240d). (i) Reads were scanned for a part of Illumina’s
13 bp adapter sequence ′AGATCGGAAGAGC′ at the 3′ end using Trim Galore
v0.4.2 with default parameters. (ii) Reads were mapped to reference genome
GRCh37 (gencode version 19) using software STAR (v2.5.2b)54 with recommended
parameters55. (iii) For each sample, a raw read count table with gene-level quan-
tification for each gene of the comprehensive gencode gene annotation file (release
19, containing 57,822 genes) was generated using script htseq-count from software
htseq (v0.8.0)56. Gene fragments per kilobase million (FPKM) of all genes from the
gencode gene annotation file were computed using software StringTie (v1.3.3b)57 in
single pass mode (no new transcript discovery), using the protocols from Pertea
et al.57 (nextflow pipeline accessible at https://github.com/IARCbioinfo/RNAseq-
transcript-nf; revision c5d114e42d).

Quality control of the samples was performed at each step. Software FastQC
(v. 0.11.5; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
check raw reads quality, software RSeQC (v. 2.6.4) was used to check alignment
quality (number of mapped reads, proportion of uniquely mapped reads). Software
MultiQC (v. 0.9)58 was used to aggregate the QC results across samples.
Concordance between sex reported in the clinical data and sex chromosome gene
expression patterns was performed by comparing the sum of variance-stabilised
read counts (vst function from R package DESeq2) of each sample on the X and Y
chromosomes (Supplementary Fig. 28B).

Variant calling on RNA. Software Needlestack was also used to call variants on the
20 RNA sequencing data for WES variant validation. Default parameters were used,
except for the phred-scaled q-value, minimum median coverage to consider a site,
and minimum mapping quality (20, 10, and 13, respectively). The annotation
procedure was the same as for WES data.

Fusion transcript detection. RNA-seq data was processed as previously
described11,13 to detect chimeric transcripts. In brief, paired-end RNA-seq reads
were mapped to the human reference genome (NCBI37/hg19) using GSNAP.
Potential chimeric fusion transcripts were identified using software TRUP59 by
discordant read pairs and by individual reads mapping to distinct chromosomal
locations. The sequence context of rearranged transcripts was reconstructed
around the identified breakpoint and the assembled fusion transcript was then
aligned to the human reference genome to determine the genes involved in the
fusion. All interesting fusion-transcript were validated by Sanger sequencing. The
code used for the fusion transcript detection is available on https://github.com/
ruping/TRUP. All the associated results are presented Supplementary Data 7, and
selected genes are highlighted in Fig. 3b.

Unsupervised analyses of expression data. The raw read counts of 57,822 genes
from the 210 samples were normalised using the variance stabilisation transform
(vst function from R package DESeq2 v1.14.1)60; this transformation enables
comparisons between samples with different library sizes and different variances in
expression across genes. We removed genes from the sex-chromosomes in order to
reduce the influence of sex on the expression profiles, resulting in a matrix of gene
expression with 54,851 genes and 210 samples. We performed four analyses, with
different subsets of samples. (i) An analysis with all 210 samples (LNEN and
SCLC), (ii) an analysis with LNEN samples only (158 samples), (iii) an analysis
with LNET and SCLC samples only (139 samples), and (iv) an analysis with LNET
samples only (89 samples). For each analysis, the most variable genes (explaining
50% of the total variance in variance-stabilised read counts) were selected (6398,
6009, 6234, and 5490 genes, respectively, for i, ii, iii, and iv). Principal component
analysis (PCA) was then performed independently for each analysis (function dudi.
pca from R package ade4 v1.7-8)61. Results are presented in Supplementary Fig. 6;
see the Multi-omic integration section of the methods for a comparison of the
results of the unsupervised analysis of expression data with that of the other 'omics.

We used the results from the PCA to detect outliers and batch effects in the
expression data set. We did not detect any outliers in any of the analyses from
Supplementary Fig. 6. We further studied the association between expression data,
batch (sample provider), and five clinical variables of interest (histopathological
type, age, sex, smoking status, and stage) using a PCA regression analysis. For each
principal component, we fitted separate linear models with each of the six
covariables of interest (provider plus the five clinical variables) and adjusted the
resulting p-values for multiple testing. Results highlighted an association between
principal component 2 and provider, histopathological type, and sex, and an
association between principal components 4 and 5 and stage (Supplementary
Fig. 30A). The fact that both histopathology and sample provider are jointly
significantly associated with PC2 is expected given their non-independence
(Supplementary Fig. 29A, B). In order to assess whether there was a batch effect
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explaining the variation on PC2, we investigated the range of samples from each
provider on PC2 (Supplementary Fig. 30B). We can see that samples from Provider
1 and provider 2 span a similar range on PC2 (from values less than –20 to values
greater than 40). Restricting the analysis to atypical carcinoids, we can further see
that AC samples from provider 2 have a range included in that of provider 1, which
is expected given their differing sample sizes (five from provider 2 compared to 20
from provider 1). Overall, this shows that samples from the two providers have
similar profiles and can be combined. In addition, we found that the samples that
were independently sequenced in a previous study11 and in this study (samples
S00716_A and S00716_B, respectively) were spatially close in the PCA (technical
replicates highlighted in Supplementary Fig. 30B).

Supervised analysis of expression data. We performed three distinct differential
expression (DE) analyses. (i) A comparison between histopathological types; (ii) A
comparison between pulmonary carcinoid (LNET) clusters A1, A2, and B (see
Fig. 5a and the Multi-omic integration method section); (iii) a comparison between
lung neuroendocrine neoplasm (LNEN) clusters Carcinoid A, Carcinoid B, and
LCNEC (see the Multi-omic integration method section).

For each differential expression (DE) analysis, among the 57,822 genes from the
raw read count tables, genes that were expressed in less than 2 samples were
removed from the analysis, using a threshold of 1 fragment per million reads
aligned. We also removed samples with missing data in the variables of interest
(either histopathological types, LNET clusters, or LNEN clusters) or in any of the
clinical covariables included in the statistical model (sex and age). This resulted in
excluding two samples with missing age data from the three analyses (samples
S01093, S02236), and further excluding three samples with no clear
histopathological type (classified as carcinoids in Supplementary Data 1) from
analysis (i) (samples S00076, S02126, S02154). For each analysis, we then identified
DE genes from the raw read counts using R package DESeq2 (v. 1.21.5)60. For each
analysis, we fitted a model with the variable of interest (type, LNET cluster, or
LNEN cluster) and using sex (two levels: male and female), and age (three levels:
(16, 40], (40, 60], (60, 90]) as covariables. We then extracted DE genes between
each pair of groups, and adjusted the p-values for multiple testing. In order to select
the genes that have the largest biological effect, we tested the null hypothesis that
the two focal groups had less than 2 absolute log2-fold changes differences. For
each analysis, we define the core genes of a focal group as the set of genes that are
DE in all pairwise comparisons between the focal group and other groups; they
correspond to genes, which expression level is specific to the focal group. For
example, given three groups—A, B, and C—to find core genes, which expression
levels uniquely define A compared to both B and C, we select DE genes that
differentiate A from B (A vs. B), DE genes that differentiate A from C (A vs. C) and
take the intersection of these gene sets [(A vs. B)∩(A vs. C)]. The code used for the
DE analyses (RNAseq_supervised.R) is available at https://github.com/
IARCbioinfo/RNAseq_analysis_scripts. Results of analysis (i) are reported in
Supplementary Data 15 and Supplementary Fig. 31; results of analysis (ii) are
reported in Supplementary Data 10 and Fig. 5a; results of analysis (iii) are reported
in Supplementary Data 12. See section Multi-omics integration for comparisons
between the analyses based on histopathological types [analysis (i)] from all ‘omics
perspectives.

Note that an alternative method for finding DE genes would be to compare a
focal group to all the other samples together. For example, comparing group A to
both groups B and C simultaneously [denoted A vs. (B and C) or A vs. the rest].
Note that this would find genes that are DE between A and the average level of
expression of B and C, and thus this alternative method would have the unwanted
behaviour of including the genes that are strongly DE in the comparison of A vs. B,
but with similar expression levels in A and C. In order to compare the methods we
used to detect core genes with this alternative method, we performed an analysis
similar to analysis (ii) but comparing a focal group to all the other samples
simultaneously (A vs. the rest). The comparison between our method and the
alternative one is presented in Supplementary Fig. 21 and shows that our analysis
provides conservative results compared to testing the focal group vs. the rest.
Indeed, core DE genes reported are almost exclusively a subset of the genes found
when comparing the focal group vs. the rest.

Immune contexture deconvolution from expression data. We quantified the
proportion of cells that belong to each of ten immune cell types (B cells, macro-
phages M1, macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells,
CD8+ T cells, CD4+ regulatory T cells, and dendritic cells) from the RNA-seq
data using software quanTIseq (downloaded 23 March 2018)62. quanTIseq uses a
rigorous RNA-seq processing pipeline to quantify the gene expression of each
sample, and performs supervised expression deconvolution in a set of genes
identified as informative on immune cell types, using the least squares with
equality/inequality constrains (LSEI) algorithm with a reference data set containing
expected expression levels for the ten immune cell types. Importantly, quanTIseq
also provides estimates of the total proportion of cells in the bulk sequencing that
do and do not belong to immune cells.

We tested whether immune composition differed between histopathological
types, LNET clusters, LNEN clusters, and supra-carcinoids using linear
permutation tests (R package lmperm, v. 2.1.0). Permutations tests are exact
statistical tests that do not rely on approximations and assumptions regarding the

data distribution, and are thus well-fitted to test whether a few samples come from
the same distribution as a larger group of samples. As such, they were well-fitted to
handle the tests involving supra-carcinoids, for which only three samples had
RNA-seq data. For each of the three analyses (histopathology, LNET clusters, and
LNEN clusters), and for each pair of groups, we fitted one model per immune cell
type, with the proportion of this cell type in each sample as explained variable and
the cluster membership as explanatory variable. We adjusted the p-values for
multiple testing. The code used for these three analyses is available on https://icbi.i-
med.ac.at/software/quantiseq/doc/index.html and the associated results are
presented Figs. 2f, 4b, and Supplementary Figs. 15, 19, and 32.

EPIC 850k methylation array. Epigenome analysis was performed on 33 typical
carcinoids, 23 atypical carcinoids, and 20 LCNEC, plus 19 technical replicates.
Epigenomic studies were performed at the International Agency for Research on
Cancer (IARC) with the Infinium EPIC DNA methylation beadchip platform
(Illumina) used for the interrogation of over 850,000 CpG sites (dinucleotides that
are the main target for methylation). Each chip encompasses eight samples, so 12
chips were needed for the 95 samples. We used stratified randomisation to mitigate
the batch effects, ensuring that the three histopathological types were present on
every chip, while also controlling for potential confounders (the sample provider,
sex, smoking status, and age of the patient); replicates were placed on
different chips.

For each sample, 600 ng of purified DNA were bisulfite converted using the EZ-
96 DNA Methylation-GoldTM kit (Zymo Research Corp., CA, USA) following the
manufacturer's recommendations for Infinium assays. Three replicates included
half the amount (300 ng). Then, 200 ng of bisulfite-converted DNA was used for
hybridisation on Infinium Methylation EPIC beadarrays, following the
manufacturer’s protocol (Illumina Inc.). This array shares the Infinium HD
chemistry (Illumina Inc.) and a similar laboratory protocol used to interrogate the
cytosine markers with HumanMethylation450 beadchip. Chips were scanned using
Illumina iScan to produce two-colour raw data files (IDAT format).

Methylation data processing. The resulting IDAT raw data files were pre-
processed using R packages minfi (v. 1.24.0)63 and ENmix (v. 1.14.0)64. We first
removed unwanted technical variation in-between arrays using functional nor-
malisation of the raw two-colour intensities, and computed the β-values for the
866,238 probes and 96 samples. Then, we filtered four types of probes that could
confound the analyses. (i) We removed probes on the X and Y chromosomes,
because we were interested in variation between tumours and treated sex as a
confounder. (ii) We removed known cross-reactive probes—i.e., probes that co-
hybridise to other chromosomes and thus cannot be reliably investigated. (iii) We
removed probes that had failed in at least one sample, using a detection p-value
threshold of 0.01, where p-values were computed with the detection P function
from R package minfi, that compares the total signal (methylated+ unmethylated)
at each probe with the background signal level from non-negative control probes.
(iv) We removed probes associated with common SNPs—that reflect underlying
polymorphisms rather than methylation profiles—using a threshold minor allele
frequency of 5% in database dbSNP build 137 (function dropLociWithSnps from
minfi). (v) We removed probes putatively associated with rare SNPs by detecting
and removing probes with multimodal β-value distributions (function nmode.mc
from R package ENmix). Next, we removed duplicated samples, randomly
choosing one sample per pair so as to minimise potential discrepancies, and we
removed one sample that came from a metastatic tumour rather than a primary
tumour. The final data set contained the β-values of 767,781 CpGs for 76 samples.

We performed quality controls of the raw data. Two-colour intensity data of
internal control probes were inspected to check the quality of successive sample
preparation steps (bisulfite conversion, hybridisation). We did not find outliers
when comparing the methylated/unmethylated channel intensities of all samples,
nor did we find samples with overall low detection p-values (the sample with the
lowest mean p-value had a value of 0.001). Concordance between the sex reported
in the clinical data and the methylation data was assessed using a predictor based
on the median total intensity on sex-chromosomes, with a cutoff of –2 log2
estimated copy number (function getSex from minfi). Consistently with the WES
and RNA-seq data, we found one sample with a mismatch between reported and
inferred sex (see results in Supplementary Fig. 28C). We investigated batch effects
at the raw data level using surrogate variable analysis. We used function ctrlsva
from package ENmix to compute a principal component analysis of the intensity
data from non-negative control probes. We retained the first ten principal
components—hereafter referred to as surrogate variables—explaining >90% of the
variation in control probes intensity. The ten surrogate variables were included as
covariables in later supervised analyses to mitigate the impact of batch effects on
the results. We checked the association of surrogate variables with batch (chip,
position on the chip, and sample provider) and clinical variables (histopathological
type, age, sex, smoking status) using PCA regression analysis, fitting separate linear
models to each surrogate variable with each of the seven covariables of interest and
adjusted the p-values for multiple testing. We show in Supplementary Fig. 33A that
surrogate variables 1, 2, 3, and 10 are significantly associated with the chip (variable
Sentrix id) or position on the chip (variable Sentrix position), while surrogate
variables 4, 5, and 10 are significantly associated with the sample provider. The
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code used to perform all the pre-processing procedure of these data is available at
https://github.com/IARCbioinfo/Methylation_analysis_scripts.

Unsupervised analysis of methylation data. The β-values of 767,781 CpGs for
76 samples were transformed into M-values to perform unsupervised analyses;
indeed, contrary to β-values, M-values theoretically range from −∞ to +∞ and are
considered normally distributed. We performed two analyses, with different subsets
of samples: (i) an analysis with all carcinoid and LCNEC samples (76 samples), and
(ii) an analysis with carcinoid samples only (56 samples). For each analysis, the
most variable CpGs (explaining 5% of the total variance in M-values) were selected
(8,483 and 7,693 CpGs, respectively, for (i) and (ii). PCA was then performed
independently for each analysis (function dudi.pca from R package ade4 v1.7-8)61.
Results are presented in Supplementary Fig. 7; see the Multi-omic integration
section of the methods for a comparison of the results of the unsupervised analysis
of methylation data with that of the other 'omics.

We used the results from the PCA to detect outliers and batch effects in the
methylation data set. We did not detect any outliers in any of the analyses from
Supplementary Fig. 7. We also performed a PCA regression analysis using the same
protocol as described in the data processing section above. Results highlighted no
association between any principal component and array batches (chip and position
in the chip; Supplementary Fig. 33A). Principal component 2 was associated with
the sample provider; further examination of the PCA (Supplementary Fig. 33B)
revealed that this effect was driven by the samples from provider 1, which have the
largest range of coordinates on PC2 (from < –30 to >100). Nevertheless, the fact
that their coordinates on PC2 overlap with that of samples from other providers,
and the fact that the vast majority of atypical carcinoid samples come from one
provider, suggest that the large range of values of provider 1 samples on PC2 is
driven by the biological variability of carcinoid methylation profiles. In addition,
note that samples that cluster with LCNEC are not solely from provider 1. We
assessed the impact of functional normalisation on batch effects by performing the
same analysis on the M-values of the 5% most variable CpGs obtained without
normalisation (Supplementary Fig. 33A). Compared to the PCA of the 5% most
variable CpGs with normalisation (Supplementary Fig. 33A), we find that the chip
position (variable Sentrix position) is significantly associated with PC10, and that
PC2 is not associated with histopathology. This suggests that the functional
normalisation reduced batch effects and revealed some of the biological variability
in methylation data.

The PCA is also informative about associations between methylation profiles
and clinical variables. We find a significant association between PC1,
histopathological type, age, and smoking status, with LCNEC, smokers, and larger
age classes located at higher PC1 coordinates (Supplementary Fig. 33A); these
associations are expected, given that the difference between LCNEC and carcinoids
is expected to be the main driver of variation in methylation, and given known the
aetiology of the diseases8. We find an association between principal component 2,
histopathology, and sex, with male and atypical carcinoids having overall larger
PC2 coordinates. We find associations of larger components, in particular PC3 and
age, and PC7 and 9, and sex.

Supervised analysis of methylation data. We detected differential methylation at
the probe level (DMP) in three independent analyses: (i) between histopathological
types (TC, AC, and LCNEC), (ii) between LNET clusters (clusters A1, A2, and B),
and (iii) between LNEN clusters (clusters A, B, and LCNEC).

To detect DMPs, for each analysis, linear models were first fitted independently for
each CpG to its M-values (function lmFit from R package limma version 3.34.9)65,
using the variable of interest (histopathology, LNET cluster, or LNEN cluster), in
addition to the sex, age group, and the ten surrogate variables as covariables. Then,
moderated t-tests were performed by empirical Bayes moderation of the standard
errors (function eBayes from package limma), and p-values were computed for each
CpG. Moderation enables to increase the statistical power of the test by increasing the
effective degrees of freedom of the statistics, while also reducing the false-positive rate
by protecting against hypervariable CpGs, and are thus favoured in array analyses.
The p-values were adjusted for multiple testing, and CpGs with a q-value <0.05 were
retained. The code used for the DMPs identification (DMP.R) is available in the
Supplementary Software 1 and the associated results of analyses (i), (ii), and (iii)
are presented Supplementary Data 16, Supplementary Data 11, and 17, respectively.
See section Multi-omics integration for comparisons between the analyses based
on histopathological types [analysis (i)] from all ‘omics perspectives. Analysis (iii)
confirmed most DMPs associated with DEGs reported in Fig. 5a for cluster B relative
to LNET clusters (TFF1, OTOP3, SLC35D3, APOBEC2) were also DMPs for cluster
B relative to LNEN clusters, showing that they harboured specific methylation levels
that made them different from the LCNEC cluster, as well as from other carcinoid
clusters.

Multi-omics integration. We performed an integrative analysis of the WES, WGS,
RNA-seq, and 850 K methylation array data, using the validated somatic mutations
(Supplementary Data 4), the variance-stabilised read counts, and the M-values,
respectively. The full data set consisted of 243 samples, but some analyses focused
on a subset of the data.

Unsupervised continuous multi-omic analyses. To perform continuous latent
factors identification, we performed an integrative group factor analysis of the
expression and methylation data using software MOFA (R package MOFAtools
v. 0.99)15. MOFA identifies latent factors (LF, i.e., continuous variables) that explain
most variation in the joint data sets. We did not include the somatic mutations in the
model because the low level of recurrence (only four recurrently mutated genes in
Supplementary Data 4) resulted in a sample by mutation matrix of much lower
dimension than the other ‘omics, which is known to bias the analyses15. Also, we did
not consider expression and methylation from the sex-chromosomes, because we were
interested in differences between tumours independently of the sex of the patient.

We performed four analyses, with different subsets of samples. (i) An analysis
with all 235 samples for which expression or methylation data was available (LNEN
and SCLC), (ii) an analysis with LNEN samples only (183 samples), (iii) an analysis
with LNET and SCLC samples only (163 samples), and (iv) an analysis with LNET
samples only (111 samples). For each analysis, the most variable genes for
expression (explaining 50% of the total variance) were selected (6398, 6009, 6234,
and 5490 genes, respectively, for i, ii, iii, and iv), and the most variable CpGs
(explaining 5% of the total variance) were selected (8483, 8483, 7693, and 7693
CpGs, respectively, for i, ii, iii, and iv). Note that these lists of genes and CpGs are
the same as the ones used to perform the unsupervised analyses of expression and
methylation data (see above sections). Also note that we did not have EPIC 850k
methylation array data for SCLC; MOFA was shown to handle missing data,
including samples with entire ‘omic techniques missing, by using the correlated
signals from several data sets (e.g., expression and methylation) to accurately
reconstruct latent factors. MOFA was performed independently for each analysis,
setting the number of latent factors to 5, because subsequent latent factors
explained <2% of the variance of both ‘omic data sets (function runMOFA from R
package MOFAtools v0.99.0). Because MOFA uses a heuristic algorithm, we
assessed the robustness of the results using 20 MOFA runs. We then computed the
correlations between each of the five first-latent factors across each run, resulting in
a correlation matrix of 100 by 100 entries (Supplementary Figs. 2 and 17). We
found that the correlations across runs were very high (> 0.95 for >80% of runs) in
all analyses, suggesting that the results are robust. In addition, we found that
correlations between latent factors within runs were small (typically below 0.2),
which suggests that latent factors capture quasi-independent sources of variation in
the data sets. For each analysis, we selected the MOFA run that resulted in the best
convergence, based on the evidence lower bound statistic (ELBO). Results are
presented in Figs. 1a, 4a, and Supplementary Fig. 13. Interestingly, we find that
MOFA latent factors 1 to 3 for analysis (i) (LNET, LCNEC, and SCLC) correspond
to MOFA LF2 to 4 for analysis (ii) (LNET and LCNEC), and to MOFA LF3 to 5 for
analysis (iv) (LNET alone); this suggests that each histopathological type introduces
an independent source of variation, resulting in a new LF. The code used for the
unsupervised continuous molecular analyses (integration_MOFA.R) is available on
https://github.com/IARCbioinfo/integration_analysis_scripts.

To perform comparisons with uni-omic unsupervised analyses, we compared the
results of MOFA with that of the unsupervised analysis of expression and
methylation data (Supplementary Fig. 3). To do so, we used the 51 LNEN samples
for which we had both expression and methylation data, and extracted their
coordinates in MOFA, expression PCA (see section unsupervised analysis of
expression data), and methylation PCA (see section unsupervised analysis of
methylation data). When using LNET and LCNEC samples (Supplementary
Fig. 3A), we found that MOFA LF1 is strongly correlated with expression PC1 and
methylation PC1 (|r| > 0.98; Supplementary Fig. 3D, E), and that expression PC1 and
methylation PC1 are strongly correlated between them (r= 0.97; Supplementary
Fig. 3C); LF2 was strongly correlated with expression PC3 (r= –0.86; Supplementary
Fig. 3P), and methylation PC2 (r= –0.98; Supplementary Fig. 3K), suggesting that
LF2 is more driven by methylation differences, but that it is nonetheless consistent
with a large proportion of expression variation. On the contrary, LF3 was more
strongly correlated with expression PC2 (r= 0.87; Supplementary Fig. 3J), suggesting
that PC3 is more driven by expression differences. All these observations are
consistent with the fact that the percentage of variance explained by LF2 and LF3 in
terms of expression and in terms of methylation are different: LF2 explains more
expression in methylation, while LF3 explains more variation in expression (Fig. 1a);
it is also coherent with the fact that clusters A1 and A2 are the most separated
clusters on expression PC2 (Supplementary Fig. 6B), while clusters A1 and B are the
most separated on methylation PC2 (Supplementary Fig. 7A). When using LNET
samples only (Supplementary Fig. 3B), we found that MOFA LF1 is strongly
correlated with expression PC2 and methylation PC1 (|r| > 0.86; Supplementary
Fig. 3M, H), and that expression PC2 and methylation PC1 are strongly correlated
between them (r= 0.72; Supplementary Fig. 3F); LF2 was strongly correlated with
expression PC1 (r= –0.88; Supplementary Fig. 3G), and methylation PC2 (r= 0.90;
Supplementary Fig. 3N), suggesting that LF2 is more driven by methylation
differences, but that it is nonetheless consistent with a large proportion of
expression variation. Again, all these observations are consistent with the fact that
the percentage of variance explained by LF1 and LF2 in terms of expression and
in terms of methylation are different (Fig. 4a); it is also coherent with the fact
that clusters A1 and A2 are the most separated clusters on expression PC1
(Supplementary Fig. 6D), while clusters A1 and B are the most separated on
methylation PC2 (Supplementary Fig. 7B).

To perform associations of latent factors with other variables, we used the
results from MOFA to detect outliers and batch effects in the data set. We did not
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detect any outliers in any of the analyses from Supplementary Fig. 13. We further
studied the associations between the first 5 LFs, batch (sample provider), and five
clinical variables of interest (histopathological type, age, sex, smoking status, and
stage) using regression analysis. For each latent factor, we fitted a linear model with
the six covariables of interest (provider plus the five clinical variables). Because of
the reported association between sex, age, and smoking status, we also included in
the model the interaction between sex and smoking status and between age and
smoking status; we adjusted the resulting p-values for multiple testing. Significant
associations (q-value < 0.05) are highlighted in Figs. 1a and 4a.

We also tested the association between MOFA clusters and mutations using
regression analysis. We tested genes recurrently mutated in carcinoids, using a
threshold of three samples (following Argelaguet et al.)15; indeed, non-recurrent
genes are not informative about molecular groups. Only two genes were retained:
MEN1 and EIF1AX. We also included recurrently mutated genes reported in
LCNEC12. Results are highlighted in Fig. 4a. Similarly, we tested the association
between pathways highlighted in Supplementary Fig. 16 (Lysine
demethyltransferases, polycomb complex, SWI/SNF complex) and MOFA LF using
regression analysis, but did not find any significant association at a false discovery
rate threshold of 0.05.

Unsupervised discrete multi-omic analyses. We identified molecular clusters—
groups of samples with similar molecular profiles—from MOFA results. Following
Mo et al.66, given a specified number of clusters K, we used the K – 1 latent factors
that explained most of the variation to perform clustering; this choice of number of
latent factors in Mo et al.66 is said to be primarily motivated by “a general principle
for separating g clusters among the n datapoints, a rank-k approximation where
k ≤ g− 1 is sufficient.” In addition, because the MOFA latent factors explaining the
most variance in gene expression and methylation are expected to capture more
biological signal compared to the ones explaining the least variance—expected to
represent more of the noise in the data set—we expect that using the first K – 1
latent factors would provide more biologically meaningful clusters than using all
latent factors. In addition, following the procedure from Wilkerson and Hayes67,
we performed consensus clustering to detect robust molecular clusters. This pro-
cedure involved multiple replicate clusterings (K-means algorithm; R function
kmeans), each on latent factors from an independent MOFA run done on a sub-
sample (80%) of the data. Pairwise consensus values were defined as the proportion
of runs in which two samples are clustered together and used as a similarity
measure, and used to perform a final hierarchical clustering (median linkage
method). Consensus clustering results for K from 2 to 5, for LNET plus LCNEC
samples, and LNET samples alone, are presented in Supplementary Figs. 5 and 18,
respectively. In the case of LNET alone, because the optimal Dunn index, which
evaluates the quality of clustering as a ratio of within-cluster to between-cluster
distances, corresponded to K= 3 clusters (Supplementary Fig. 18C), we chose the
solution with three clusters. Nevertheless, note that the cluster memberships for K
= 4 and K= 5 are almost perfectly nested into that for K= 3 (e.g., samples from
the blue cluster for K= 3, Supplementary Fig. 18B are split between a blue and a
purple cluster for K= 4), so the solutions with three and four clusters are coherent.
Cluster memberships are highlighted in Fig. 4a. Similarly, in the case of LNET plus
LCNEC samples (LNEN), because the optimal Dunn index is reached when K= 3,
we chose that solution, but note that the cluster memberships for K > 3 are also
nested into that for K= 3, so all results are coherent across values of K.

In order to test whether using additional latent factors could increase the power
to detect molecular clusters, we performed a similar analysis but using all five latent
factors identified by MOFA. In order to provide more importance to the factors
most likely to capture the biological variation in the data, the multiple replicate
clusterings were performed using a weighted k-means algorithm, where variables
(here MOFA latent factors) are given weights corresponding to their proportion of
variance explained. More specifically, instead of minimising the within-cluster sum
of squares, the weighted within-cluster sum of squares is minimised. Results for
K= 3 clusters of LNET and LNEN samples are presented in Supplementary Fig. 8.
We can see that the alternative approach (weighted K-means on five latent factors)
leads to the exact same cluster membership as the original approach (K-means on
K – 1 latent factors), both for LNEN and LNET clusters. Indeed, among the latent
factors, only the first 3 were associated with either the LNEN clusters (ANOVA
q= 4.09 × 10−84, 8.63 × 10−80, 0.66, 0.094, 0.24, respectively, for latent factors 1
through 5) or the LNET clusters (ANOVA q= 5.06 × 10−4, 5.99 × 10−47, 5.12 ×
10−46, 0.15, 0.052, respectively), which indicates that the first three latent factors
captured the differences between clusters. The code used for the clustering analyses
(integration_unsupervised.R) is available at https://github.com/IARCbioinfo/
integration_analysis_scripts.

GSEA on multi-omic latent factors. We performed gene set enrichment analysis
(GSEA) on the latent factors identified by MOFA using the built-in function
FeatureSetEnrichmentAnalysis15. This tests for each latent factor whether the
distribution of the loadings of features (genes or CpGs) from a focal set are sig-
nificantly different from the global distribution of loadings from features outside
the set. We performed the analysis using two reference databases of gene sets: GO
and KEGG. To retrieve the appropriate databases, for all genes from the muti-
omics integration analysis, we downloaded GO terms using R package biomaRt68,

and we retrieved KEGG pathways using R package KEGGgraph (v. 1.38.0)69.
Results are presented in Supplementary Data 6.

Expression and methylation correlation analysis. We performed correlation
tests in two analyses: (i) between LNET clusters (clusters A1, A2, and B), and (ii)
between LNEN clusters (clusters A, B, and LCNEC). We selected for each gene, the
set of CpGs in the region −2000 to +2000 from the transcription start site (TSS)
using function getnearestTSS from R package FDb.InfiniumMethylation.hg19
version 2.2.0 based on the IlluminaHumanMethylationEPICanno.ilm10b2.hg19
annotation (get Annotation function from R package minfi version 1.24.0)63.

We performed correlation test analyses (function cor.test from R package stats
version 3.5.1) using the core genes lists (Supplementary Data 10 and 12) to find
associations between expression and methylation data for each CpG, using
Pearson's correlation coefficient. The p-values were adjusted for multiple testing. In
addition, we explored the correlation between expression and methylation data by
fitting a linear model independently for each correlated CpG (function lm from R
package stats version 3.5.1). Finally, we calculated the interquartile distance of
β-values for each CpG. CpGs with a q-value < 0.05, r2 > 0.5 and an interquartile
distance greater than 0.25 were retained and, among these CpGs, only the one with
the smallest q-value has been represented in Supplementary Fig. 22. Results of
analyses (i) and (ii) are reported in Supplementary Data 10 and 12.

Survival analysis using penalised generalised linear model. We computed
a generalised linear model with elastic net regularisation (R package glmnet
v2.0-16)70 to select the genes associated with the survival of LNET samples. We
fixed the elastic net mixing parameter α to 0.5 and used leave-one-out cross-
validation to determine the regularisation parameter λ (cv.glmnet function from
glmnet package). To be more stringent, the optimal regularisation parameter
chosen was the one associated with the most regularised model with cross-
validation error within one standard deviation of the minimum. In order to
identify the genes associated with the poor survival of the cluster Carcinoid B, we
included in the model only the expression of the core genes of this cluster defined
in the MOFA considering only the LNET samples (see section Multi-omics inte-
gration). We used the normalised read counts, and centred and scaled them using
R package caret (v6.0-80). The genes with non-zero estimated coefficients are listed
in Supplementary Data 13. For each non-coding gene, we determined the optimal
cutpoint of expression (normalised read counts) that best separates the survival
outcome into two groups using the surv_cutpoint function based on the maximally
selected rank statistics and available in the R package survminer (v0.4.3). The
minimal proportion of samples per group was set to 10%.

Supervised multi-omic analyses. We performed supervised learning in order to
classify typical and atypical carcinoids, and LCNEC based on the different 'omics
data available: expression and methylation data.

Classification algorithm: Each classification was performed using a random
forest algorithm (R package randomForest v4.6-14). Considering the restricted
number of samples, we performed a leave-one-out cross-validation. For each run,
to increase the training set size, minority classes were oversampled so that all
classes reach the same number of training samples. Note that for the sample with
technical replication of RNA-seq data (S00716_A and S00716_B), in order to avoid
model overfitting, the two replicates were never simultaneously included in the
training and test sets. Also in order to avoid overfitting, we performed
normalisation and independent feature filtering within each fold, so that test
samples were excluded from this step. More specifically, for the expression data, the
features of the training set were first normalised using the variance stabilisation
transformation (vst function from R package DESeq2 v1.22.2), then mean-centred
and scaled to unit variance. Then, the variance stabilising transformation learned
from the training set was applied to the test set using the dispersionFunction
function from the DESeq2 package, and centreing and scaling were performed
using the values learned from the training set. For the methylation data, the M
values were computed using the R package minfi (v1.28.3); the features of the
training set were mean-centred and scaled to unit variance, then the test sample
features were centred and scaled using the values learned from the training set. For
each fold of the leave-one out, the training set was used for the feature selection.
Based on the training set, we selected the most variable features, representing 50%
and 5% of the total variation in expression and methylation data, respectively. The
code used for the machine learning analyses (ML_functions.r) is available in the
Supplementary Software 1 and the associated results are reported in Supplementary
Data 1.

Defining an Unclassified category: The random forest algorithm provides for
each predicted sample the class probabilities. We considered a sample as
unclassifiable (Unclassified category) if the ratio of the two highest probabilities
was below 1.5. In fact, this threshold allowed us to identify a category of samples
with intermediate molecular profiles, for which the algorithm assigns similar
probabilities to the two most probable classes. Because of the small sample size, this
parameter was chosen a priori and not tuned in order to avoid overfitting. In
Supplementary Fig. 10, we compared the classification results when considering
three different thresholds: 1 (which corresponds to no ratio and results in few
unclassified samples, i.e., only discordant expression and methylation-based
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predictions, see Integration of expression and methylation data below), 1.5 (which
corresponds to the ratio reported in the main text), and 3 (which corresponds to a
very stringent ratio resulting in more unclassified samples). Except for the size of
the unclassified classes that depends on the ratio used, the confusion matrices for
the three ratios were qualitatively similar, with most LCNEC samples correctly
classified, a majority of typical correctly classified, and almost as many atypical
classified as typical and classified as atypical. In addition, the survival analyses of
the three models also led to similar conclusions, with atypical carcinoids classified
as atypical by the machine learning having a survival that is not statistically
significantly different from that of LCNEC samples but that is lower from both that
of typical carcinoids predicted as typical carcinoids, and that of atypical predicted
as typical. However, in the case of the largest ratio, the small number of atypical
samples predicted in those categories did not enable the identification of two
groups of atypical carcinoids with significant different overall survival (p= 0.086).

Number of samples and features: To classify LCNEC against atypical and typical
carcinoids, 157 and 76 samples were considered using the expression and
methylation data, respectively. The number of features selected in each fold of the
leave-one-out are of the order of 6000 and 8000 for expression and methylation
features, respectively. For the analysis based on MKI67 only (Supplementary
Fig. 31C, left panel), the only feature considered was the expression of MKI67.

Integration of expression and methylation data: As the random forest algorithm
does not handle missing data directly, and because only 51 out of 182 LNEN
samples had both expression and methylation data available (Supplementary
Fig. 1), we performed random forest classification on expression and methylation
separately, and merged the classification results by combining the two sets of ML
predictions. Thus, the samples with both expression and methylation data were
associated with two predictions. When the two predictions were discordant we
applied the following rules: (i) if one prediction was Unclassified (see Defining an
Unclassified category above) and the other a histopathological category, we chose
the histopathological category (ii) if the two predictions were different
histopathological categories, we chose the Unclassified category.

Note that fitting independent random forest models on each data set separately
corresponds to maximising the number of samples (n) per model at the expense of
the number of features (p), because each model relies only on the number of
features in a single data set. An alternative approach is to maximise the number of
features (p) by combining both data sets, at the expense of the number of samples
n, because of the limited number of samples with both data types available. Indeed,
for fixed n increasing p requires less parameters and leads to a higher statistical
power. Nevertheless, in our case, because of missing data, increasing p by using
both omics layers would drastically reduce n, restricting our sample set (n= 157
and n= 76 for expression and methylation, respectively) to the set of samples with
both layers (n= 51, including only a single supra-carcinoid). Given the existence of
very rare entities such as the supra-carcinoids, accurately capturing the diversity of
molecular profiles in the training set was our priority, and thus we chose to
maximise n. In addition, by maximising n, we hypothetically ensured that we
would also maximise the power of the subsequent analyses based on the ML results.
To confirm this hypothesis, we performed the ML analyses on the restricted set of
samples, including both expression and methylation data in the same model and
compared the predictions of this model to the combined predictions based on
expression and methylation data separately. We found that the predictions
(confusion matrix in Supplementary Fig. 9) were similar, with 43/51 samples with
both data types predicted similarly in the two models. In addition, our main finding
—the existence of two groups of atypical samples, which tended to have a good and
bad prognosis (red and pink curves Fig. 1b)—still held, but that limited number of
samples impeded the statistical analyses. In fact, none of the Cox regression tests
were significant even for the groups displaying the largest differences (e.g., ML-
predicted LCNEC vs. ML-predicted typical samples), and even when comparing
the histological types reported by the pathologists (bottom panel Supplementary
Fig. 9). This supports our hypothesis that maximising p at the expense of n leads to
a decrease in power in subsequent analyses due to a smaller sample size, and
comforts our initial choice.

As matrix factorisation methods such as MOFA and PCA remove correlations
between features by finding latent factors that summarise them, they could
presumably improve the performance of ML. Nevertheless, by providing low-
dimensional approximations of the data, such techniques induce a loss of
information, which could reduce the performance of the ML. To assess the balance
between these beneficial and detrimental effects, we also performed ML using the
MOFA factors or the principal components of the PCA analysis, using factors or
components that explained at least 2% of the variance (five MOFA latent factors,
six expression PCs, and five methylation PCs, respectively). These analyses are
presented in Supplementary Fig. 12 and led to similar classification to the results
presented in the main text Fig. 1. In addition, in the case of MOFA factors, in
accordance with Fig. 1, atypical carcinoids were stratified into a group with an
overall survival similar to that of the LCNEC (in red) and a group with a higher
overall survival (in pink), similar to that of the typical carcinoids. When using the
principal components, despite a similar trend, the difference in survival between
the high- and low-survival groups was not significant. These results show that
dimensionality reduction does not lead to an increased classification ability, nor
does it provide a better explanation of clinical behaviour. We thus chose to
represent only the results of the ML analyses based on expression and methylation
data in the main text and figures.

Survival analysis based on expression and methylation data. We divided
the samples into different groups based on the ML predictions. We represented
the Kaplan–Meier curves of the predictions groups by selecting the groups
with >10 samples and gathering the unclassified samples in the same group.
Using Cox’s proportional hazard model and using the logrank test statistic
(R package survival v2.42-3) we compared the overall survival of LCNEC, aty-
pical and typical samples based on the histopathological classification and
based on the ML predictions (Supplementary Fig. 11A). Forest plots were drawn
using R package survminer (v0.4.3). The same survival analysis was performed
using the ML predictions based on MKI67 expression only (Supplementary
Fig. 11C).

Comparison between the supervised analyses of typical and atypical carci-
noids. We contrasted the results of the different supervised analyses between
typical and atypical carcinoids based on clinical data, specific markers (Ki67),
machine learning, differential expression, and differential methylation (Supple-
mentary Fig. 31). Survival analyses showed a significant difference between his-
topathological types (Supplementary Fig. 31A). Nevertheless, the machine learning
classifier based on the genome-wide expression or methylation data could not
properly distinguish atypical and typical carcinoids (Supplementary Fig. 31B): there
were 64–83% correctly classified typical carcinoids and only 30–41% correctly
classified atypical carcinoids. The differential expression analysis showed that
atypical carcinoids also presented very few core differentially expressed genes
(Supplementary Fig. 31C, middle panel and Supplementary Data 15) and differ-
entially methylated positions (Supplementary Fig. 31C, right panel and Supple-
mentary Data 17). Overall, these data suggest that the histopathological
classification, although clinically meaningful, does not completely match the
molecular classification.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The exome sequencing data, RNA-seq data, and methylation data have been deposited
in the European Genome-phenome Archive (EGA) database, which is hosted at the EBI
and the CRG, under accession number EGAS00001003699. Other data sets referenced
during the study are available from the EGA website under accession numbers
EGAS00001000650 (pulmonary carcinoids)11, EGAS00001000708 (LCNEC)12, and
EGAS00001000925 (SCLC)13,14. All the other data supporting the findings of this study
are available within the article and its supplementary information files and from the
corresponding author upon reasonable request. A reporting summary for this article is
available as a Supplementary Information file.

Code availability
The code and software sources from previously published algorithms used to perform the
analyses are detailed in the supplementary tables and online methods. Custom scripts are
provided in the Supplementary Software 1. All sources for the software used in the
manuscript are summarised in Supplementary Data 18.
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ABSTRACT

Introduction: DNA mutational profiling showed that
atypical carcinoids (ACs) share alterations with large cell
neuroendocrine carcinomas (LCNECs). Transcriptomic
studies suggested that LCNECs are composed of two sub-
types, one of which shares molecular anomalies with SCLC.
The missing piece of information is the transcriptomic
relationship between ACs and LCNECs, as a direct com-
parison is lacking in the literature.

Methods: Transcriptomic and genomic alterations were
investigated by next-generation sequencing in a discovery
set of 14 ACs and 14 LCNECs and validated on 21 ACs and
18 LCNECs by using custom gene panels and immunohis-
tochemistry for Men1 and Rb1.

Results: A 58-gene signature distinguished three tran-
scriptional clusters. Cluster 1 comprised 20 LCNECs and
one AC harboring concurrent inactivation of tumor protein
p53 gene (TP53) and retinoblastoma 1 gene (RB1) in the
absence of menin 1 gene (MEN1) mutations; all cases
lacked Rb1 nuclear immunostaining. Cluster 3 included 20
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ACs and four LCNECs lacking RB1 alterations and having
frequent MEN1 (37.5%) and TP53 mutations (16.7%);
menin nuclear immunostaining was lost in 75% of cases.
Cluster 2 included 14 ACs and eight LCNECs showing in-
termediate features: TP53, 40.9%; MEN1, 22.7%; and RB1,
18.2%. Patients in cluster C1 had a shorter cancer-specific
survival than did patients in C2 or C3.

Conclusions: ACs and LCNECs comprise three different and
clinically relevant molecular diseases, one AC-enriched
group in which MEN1 inactivation plays a major role, one
LCNEC-enriched group whose hallmark is RB1 inactivation,
and one mixed group with intermediate molecular features.
These data support a progression of malignancy that may
be traced by using combined molecular and immunohisto-
chemical analysis.

� 2019 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Lung neuroendocrine tumors; Atypical carcinoid;
Large cell neuroendocrine carcinoma; Gene expression
profiling; Next-generation sequencing; Transcriptomics

Introduction
The current WHO classification divides lung neuro-

endocrine tumors (LNETs) into four histological variants:
typical carcinoid (TC), atypical carcinoid (AC), large cell
neuroendocrine carcinoma (LCNEC), and SCLC.1 From a
clinical standpoint, carcinoids (TCs and ACs) are distin-
guished from carcinomas (LCNEC and SCLC). TCs are
low-grade tumors, with patients having a long life ex-
pectancy, and ACs are intermediate-grade tumors with
varying clinical behavior. Conversely, LCNECs and SCLCs
are both high-grade tumors with a dismal prognosis.1–3

The insufficient knowledge of LNET biology limits the
comprehension of these tumor subtypes, which to date
have been considered as having a separate pathogen-
esis.4–7 Recent DNA mutational profiles showed that
carcinoids and carcinomas share similar gene alterations,
but with different prevalence among the subtypes.8 Al-
terations in chromatin remodeling genes are found in all
four variants, whereas menin 1 gene (MEN1) alterations
are found mainly in carcinoids, and inactivation of tumor
protein p53 gene (TP53) and retinoblastoma 1 gene (RB1)
is significantly enriched in carcinomas.5,8–12 The fact that
the same gene alterations found in carcinomas are iden-
tified in low-grade tumors but at a lower prevalence may
suggest the existence of progression of malignancy and
the development of secondary high-grade neuroendo-
crine carcinomas from preexisting carcinoids.8,13

Gene expression profiles produce a global picture
of cellular function, and it has been shown that the
transcriptional phenotypes of lung cancers mimic the
WHO classification.6,14 They may also provide additional
stratification within histological subtypes (that is, the
potential to identify molecular subgroups within tumors
showing similar morphological features).14,15

Three gene expression profiling studies of LNETs
have been recently published.9,14,16 Asiedu et al. re-
ported that transcriptomic profiles could distinguish
between carcinoids (TCs and ACs) and SCLC16; in this
study LCNECs were not included. Karlsson et al.
analyzed an ample series of large cell lung carcinomas,
including LNECs, and observed a clear separation of
three transcriptional groups: adenocarcinoma, squa-
mous cell carcinoma, and a third neuroendocrine group
comprising SCLC and LCNEC.14 Moreover, the compari-
son of LCNEC and SCLC showed that LCNEC exhibited
two different transcriptional profiles associated with
different TP53 and RB1 genes alteration patterns, cor-
responding to a proposed genetic division of LCNEC into
SCLC-like and NSCLC-like cancers.14 A study of 75
LCNECs by George et al. confirmed the existence of two
LCNEC subtypes, one (type II) characterized by the
concurrent inactivation of TP53 and RB1 (42%) and one
(type I) with TP53 and serine/threonine kinase 11 gene
(STK11)/kelch like ECH associated protein 1 gene
(KEAP1) alterations (37%), but clearly showed that
LCNECs have no transcriptional relationship with ade-
nocarcinomas and squamous cell carcinomas.9

The missing piece of information is the tran-
scriptomic relationship between AC and LCNEC, as a
direct comparison, is lacking in the literature.
Materials and Methods
Cases

A cohort of 67 surgically resected LNETs was
collected from four Italian institutions (Applied Rea-
search on Cancer-Network [ARC-Net] Research Centre-
Verona, IRCCS San Martino-Genova, University of Pisa,
and AUO Orbassano-University of Turin). All cases were
reclassified according to the WHO 2015 criteria1 and
included 35 ACs and 32 LCNECs. Neuroendocrine
differentiation was assessed by using immunostaining
for chromogranin, synaptophysin, and CD56.1,17,18 The
AC diagnostic criteria included a well-differentiated
morphology with between two and 10 mitoses per 2
mm2 of area and/or presence of focal necrosis.19,20

LCNECs were diagnosed on the basis of non–small cell
cytologic features, including large cell size, low nuclear-
to-cytoplasmic ratio, prominent nucleoli or vesicular
chromatin, a mitotic rate of more than 10 mitoses per 2
mm2 (average 60–80 mitoses per 2 mm2), and more
extensive necrosis.18–20 Tumor stage was assigned ac-
cording to the seventh edition of the TNM classification

http://creativecommons.org/licenses/by-nc-nd/4.0/
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of malignant tumors.21 None of the patients received
preoperative therapy. Samples were divided into two
groups: a discovery set including 28 samples (14 ACs
and 14 LCNECs) and a validation set of 39 samples
(21 ACs and 18 LCNECs).

Ethics
Ethics committee approval (ECA) was obtained at

the four institutions: ARC-Net Research Centre-Verona
(ECA no. 2173-prot.26775 [1 June 2012]), AUO
Orbassano-University of Torino (ECA no. 167/2015-prot.
17975 [October 21, 2015]), IRCCS San Martino-Genova
(ECA no. 027/2016LM [16 March 2016]), and Univer-
sity of Pisa [ECA no. 1040/16 [March 31, 2016]).

Mutational, CNV, and Expression Analysis by
Next-Generation Sequencing

The details of the experimental procedures are
described in the Supplementary Methods. Briefly, nucleic
acids were obtained from formalin-fixed paraffin-
embedded tissues as reported.22,23 Sequencing was per-
formed on Ion Torrent platform (Thermo Fisher Scienti-
fic). Data analysis including variant calling was done
by using Torrent Suite Software, version 5.0 (Termo
Fisher Scientific). Unfiltered variants are reported in
Supplementary Tables 1 and 2. Filtered variants were
annotated by using a custom pipeline based on vcflib
(https://github.com/ekg/vcflib), SnpSift,24 and Variant
Effect Predictor.25 Annotated variants were filtered by
using only the canonical transcripts. Only missense,
nonsense, frameshift, or splice site variants were
retained. Germline variants were removed. Alignments
were visually verified with the Integrative Genomics
Viewer, version 2.3,26 to confirm the presence of identi-
fied mutations and to exclude sequencing artefacts. The
mutational profile27 of each sample was obtained with
the MuSiCa software.28 Copy number variation (CNV)
was evaluated by using OncoCNV software, version 6.8.29

The AmpliSeqRNA plugin was used to analyze expression
profiling data. Differential analysis was performed by
using the DESeq230 package for R; an adjusted p value
less than 0.05 was considered significant. For gene set
analysis, the GSVA31 package was used.

Immunohistochemistry
Immunostaining was performed by using the Bond

Polymer Refine Detection kit (Leica Biosystems) in a
BOND-MAX system (Leica Biosystems) on 4-mm-thick
formalin-fixed paraffin-embedded sections with the pri-
mary antibodies for menin (clone A300-105A [Bethyl
Laboratories], dilution 1:1000) and Rb (clone 4H1 [Cell
Signaling Technology], dilution 1:250). Appropriate
positive and negative controls were run concurrently.
Statistical Analysis
One-way analysis of variance, the Kruskal-Wallis test,

the Fisher test with Monte Carlo simulation, and the
Fisher exact test were used as appropriate; correction
for multiple comparisons was performed according to
Benjamini-Hochberg. The Mantel-Cox test was used to
compare survival curves. A p value less than 0.05 was
considered as significant. Analyses were performed by
using Medcalc for Windows, version.18.11 (MedCalc
Software), and R software, version 3.5.3.32

Results
Study Design

The cohort of 67 cases was divided into a discovery
set and a validation set, consisting of 28 and 39 cases,
respectively. The study workflow is depicted in
Supplementary Figure 1.

The discovery screen was performed on 14 ACs and
14 LCNECs with use of the Ampliseq Transcriptome
Human Gene Expression Kit (ThermoFisher), which in-
vestigates the expression of 20,815 human genes, and
the Ampliseq Comprehensive Cancer Panel (Thermo-
Fisher) for mutational and CNV analysis of 409 genes.

The validation set comprised 21 ACs and 18 LCNECs
and was analyzed by targeted sequencing with the use of
two custom panels. The first panel was designed to
assess the mRNA expression level of 60 genes, including
58 that were differentially expressed in the discovery set
plus MEN1 and RB1. The second panel was devised to
evaluate DNA alterations in 16 genes: seven genes for
mutational analysis only, three genes for CNV analysis
only, and six genes for both mutational and CNV analysis.

The expression profiles clustering analysis and the
prevalence of mutations and CNVs were finally
computed on the entire cohort of 67 cases.

Clinicopathologic Features
Clinicopathologic data are summarized in

Supplementary Table 3 and detailed in Supplementary
Table 4. The 67 patients had a mean age of 66.2 years
and a median clinical follow-up time of 17 months
(range 2–100). Of the 67 cases, 33 (49%) were stage I,
24 (36%) stage II, six (9%) were stage III, and four (6%)
were stage IV. ACs and LCNECs differed by patient age,
patient sex, tumor size, and Ki67 index, whereas there
was no statistically significant difference for smoking
status and stage (see Supplementary Table 3).

Gene Expression Analysis and Unsupervised
Hierarchical Clustering of Discovery Set

Gene expression analysis was performed on the 28
samples of the discovery set and eight nonneoplastic lung
samples. Hierarchical unsupervised clustering analysis

https://github.com/ekg/vcflib


Figure 1. Transcriptome analysis of the discovery set of 28 lung neuroendocrine neoplasms distinguished three molecular
clusters of tumors. (A) Hierarchical unsupervised clustering of transcriptomes of 14 atypical carcinoids (ACs) (green) and 14
large cell neuroendocrine carcinomas (LCNEC) (orange) plus eight normal lung (N) (light blue) samples with use of the Ward D2
algorithm Tumors were grouped in three separate clusters (C1, C2, and C3) that differ from normal lung samples. Case ID is
indicated at the bottom, gene names are indicated on the right. (B) Alterations in 16 genes at sequencing analysis; the legend
for pathological and molecular alterations is reported in the panel on the right. The mutation spectrum takes into consider-
ation all nonsynonymous variants detected per megabase of exonic sequence, grouped into six classes; stacked bars represent
the percentage of each group in each sample. (C) Copy number variations within the three clusters (left panel) refer to
chromosomes; frequency of copy number variation alterations (right panel) where copy gain events are indicated in red and
losses in blue. TP53, tumor protein p53 gene; RB1, retinoblastoma 1 gene;MEN1, menin 1 gene; NOTCH2, notch 2 gene; STK11,
serine/threonine kinase 11 gene; SMARCA2, SWI/SNF related, matrix associated, actin dependent regulator of chromatin,
subfamily a, member 2 gene; SMARCA4, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, sub-
family a, member 4 gene; MYCL1, v-myc avian myelocytomatosis viral oncogene lung carcinoma derived homolog gene;
MYC, v-myc avian myelocytomatosis viral oncogene homolog gene; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha gene; KMT2D, lysine methyltransferase 2D gene; PTEN, phosphatase and tensin homolog gene;
KMT2C, lysine methyltransferase 2C gene; CDKN2A, cyclin dependent kinase inhibitor 2A gene; KEAP1, kelch like ECH asso-
ciated protein 1 gene; ARID1A, AT-rich interaction domain 1A gene; BAP1, BRCA1 associated protein 1 gene; TERT, telomerase
reverse transcriptase; APC, APC, WNT signaling pathway regulator; FGRF1, gene; CCND2, cyclin D2 gene; NKX2-1, NK2
homeobox 2 gene; SRC, SRC proto-oncogene, non-receptor tyrosine kinase gene; CHEK2, checkpoint kinase 2 gene.
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using the Ward D2 algorithm identified four clusters
(Fig. 1A): cluster 1 (C1), which included 12 samples (11
LCNECs and one AC); cluster 2 (C2), which included five
samples (all ACs); cluster 3 (C3) , which included 11
samples (eight ACs and three LCNECs); and a fourth group
(N), which included all nonneoplastic lung samples.

To verify the robustness of clusters, nonnegative
matrix factorization (NMF) based on the expression
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profile of the top varying 5000 genes was performed
(Supplementary Fig. 2). NMF supported the presence of
three LNET classes and one class of normal samples
(Supplementary Fig. 2A). Comparison of the four NMF
classes versus the four hierarchical clustering clusters
showed that 32 of 35 cases (91.4%) were consistently
assigned to corresponding groups (Supplementary
Fig. 2B), confirming the reliability of clusters.

To analyze differentially affected pathways, gene set
variation analysis was performed31 aggregating gene
expression data according to the “hallmark” gene sets
collection from the Molecular Signatures Database
(http://software.broadinstitute.org/gsea/msigdb). Gene
set variation analysis identified differentially enriched
gene sets between tumor clusters (Supplementary Fig. 3).
In particular, the gene sets of E2F targets and G2/M
checkpoint showed a progressively higher score moving
from cluster C3 toward cluster C1 (p < 0.001). The E2F
targets gene set includes downstream targets of the E2F
transcription factors family, which play a major role in
G1/S transition.33 Similarly, genes of the G2M checkpoint
set mediate progression through the cell cycle. Thus,
coordinated enrichment of both sets is consistent with
increased proliferation.

Conversely, the bile acid metabolism gene set,
including members involved in peroxisome organization,
was increasingly up-regulated moving from C1 to C3
(p ¼ 0.0217). A similar trend was also observed in the
other gene sets enriched at a false discovery rate of 0.1.
Indeed, genes involved in the mitotic spindle and v-myc
avian myelocytomatosis viral oncogene homolog gene
(MYC) targets were enriched in C1, consistent with
recurrent MYC copy gain in this cluster, whereas gene
sets related to bile acid metabolism (fatty acid meta-
bolism, xenobiotic metabolism, and peroxisome) were
enriched in C3. Finally, C1 and C2 displayed enrichment
in Wnt signalling compared with C3 (Supplementary
Table 5 and see also Supplementary Fig. 3).

A set of 58 genes was identified as differentially
expressed among the three clusters (p < 0.05). The de-
tails on differentially expressed genes are reported in
Supplementary Table 6 and their distribution in the
three LNET clusters in Supplementary Figure 4.
A 58-Gene Signature Identifies Three Expression
Profiling Clusters with Distinct Clinicopathologic
Features

An RNA targeted sequencing custom panel, designed
by using the 58-gene signature identified in the discovery
set, was used to analyze the entire series of 67 cases (35
ACs and 32 LCNECs) comprising the 28 of the discovery
set and the 39 of the validation set. Additionally, MEN1
and RB1 transcripts were included in the custom panel
because of their known involvement in AC and LCNEC,
respectively,9,14,34 to correlate their expression levels
with the mutational status.

Hierarchical clustering using the 58 genes and Ward
D2 algorithm categorized the cases in three clusters
(Fig. 2), which were consistent with those obtained by
the analysis of 20,815 genes in the discovery set. Clini-
copathologic features of the 67 cases are compared
across the three clusters in Table 1. Cluster 1 contained
20 LCNECs and one AC. This cluster showed a higher
Ki67 index (mean 66% [p < 0.0001]) and shorter
cancer-specific survival (p ¼ 0.26). C3 included 20 ACs
and four LCNECs characterized by a lower Ki67 index
(mean 21%) and did not reach the median cancer-
specific survival (Supplementary Fig. 5). C2 included
14 ACs and eight LCNECs showing intermediate features
between those in C1 and C3, with a mean Ki67 index of
36% and a median cancer-specific survival of 47 months.
Remarkably, this intermediate C2 cluster was composed
of two subclusters (see Fig. 2). C2a included eight
LCNECs and three ACs, the former characterized by TP53
mutations in all eight cases associated with a heterozy-
gous RB1 mutations in four of them, whereas one of the
three ACs had a MEN1 mutation. C2b included 11 ACs,
four of which harbored a MEN1 mutation and one had a
TP53 mutation. The Ki67 index in C2a (mean 60.0, me-
dian 60.0, range 10%–80%) was higher than in C2b
(mean 12.0; median 7.0; range 3-35%).

MEN1 and RB1 expression levels were differentially
distributed among the clusters, with significant under-
expression of RB1 in all C1 cases and significant under-
expression of MEN1 in most of the C3 samples and
one-third of the C2 samples (Fig. 3A).
Discovery Screen of Mutations and CNVs of 14
ACs and 14 LCNECs

Mutational analysis was performed on the discovery
set for the coding sequence of 409 genes. Sequencing
achieved an average coverage of 698� (198�–1657�)
in tumor and 386� (26�–981�) in normal samples
(Supplementary Table 7).

Mutations were identified in 22 of the 28 cases. All
12 cases in C1 harbored mutations, whereas two of five
cases in C2 and four of 11 in C3 had no mutations. A
total of 79 mutations were identified in 36 genes: 56
missense, 10 nonsense, eight frameshift, and five splice
site (Supplementary Table 8). TP53 was the most
frequently mutated gene (13 of 28 [46.4%]), followed
by RB1 (11 of 28 [39.3%]), notch 2 gene (NOTCH2)
(five of 28 [17.9%]), and MEN1 (four of 28 [14.3%])
(Fig. 1B). The mutational spectrum was prevalently
characterized by T>C and C>T transitions, with
different relative contributions in individual tumors.

http://software.broadinstitute.org/gsea/msigdb


Figure 2. Validation analysis on 67 lung neuroendocrine neoplasms confirms the existence of three clusters of tumors. (A)
Hierarchical clustering of 35 atypical carcinoids (ACs) and 32 large cell neuroendocrine carcinomas (LCNECs) with use of an
RNA custom panel of 58 genes confirmed the presence of the three different molecular subgroups identified by whole
transcriptome analysis (see Fig. 1 and Supplementary Fig. 4) and suggests further splitting of cluster 2. (B) Clinicopathologic
features of the 67 samples; the legend for clinical pathological and molecular alterations is reported in the panel on the right.
(C) The 16 genes that were altered at sequencing analysis; the legend for alteration type is reported in the panel on the right.
(D) Immunohistochemical analysis data of menin and Rb.
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The most frequent trinucleotide substitution was C
[T>C]G, followed by A[T>C]G and A[C>T]G. In
particular, all three clusters showed C[T>C]G as the
most frequent substitution. The A[T>C]G substitution
was the second most frequent in C1 and C2 but not in
C3, in which the second most frequent substitution was
A[C>T]G. However, no specific substitution was pre-
dominant in any cluster.

The CNV status was estimated for all 409 genes by
using sequencing data (Supplementary Table 9). The
most frequently altered were 20 genes (Supplementary
Table 10), including gains in succinate dehydrogenase
complex flavoprotein subunit A gene (SDHA), RPTOR
independent companion of MTOR complex 2 gene (RIC-
TOR), telomerase reverse transcriptase gene (TERT) (12
of 28 each [42.9%]), and MYC (11 of 28 [39.3%]) and
losses in BRCA1 associated protein 1 gene (BAP1) (12 of
28 [42.9%]), RB1 (10 of 28 [35.7%]), and MEN1 (eight of
28 [28.6%]). On the basis of the chromosomal position of
each gene, the status of chromosome arms was inferred



Figure 3. mRNA and immunohistochemical expression analysis of MEN1 and RB1. (A) Expression levels (natural logarithm
values on y axes) of menin 1 gene (MEN1) and retinoblastoma 1 gene (RB1) genes in the three molecular clusters (on x axes)
identified by gene expression profiling (see Fig. 2); the dashed red line represents the average gene expression across the
entire cohort (reference line). (B) Representative images of positive and negative nuclear immunostaining for menin and Rb
proteins in two cases harboring a truncating mutation of the corresponding gene, namely Cys235* truncating mutation in
MEN1 gene and Arg255* truncating mutation in RB1 gene. (scale bars ¼ 100 mm; original magnifications, �10 and �40 [inset]).
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(Fig. 1C and Supplementary Table 11). Such analysis
showed major alterations, namely, losses of chromosome
arm 3p (14 of 28 [50.0%]) and whole chromosomes 18
(11 of 28 [39.3%]) and 11 (nine of 28 [32.1%]) and
gains in chromosome arms 8q (12 of 28 [42.9%]) and 5p
(11 of 28 [39.3%]). Chromosome alterations according
to tumor type and expression profile clusters are illus-
trated in Supplementary Figure 6.

Validation of Mutations and CNVs in 21 ACs and
18 LCNECs by Targeted Sequencing of 16 Genes

The validation set was analyzed by targeted
sequencing using a DNA custom panel of 16 genes
altered in both the present study and other studies
investigating LNETs,5,9,16,35 investigating the mutational
status of seven genes, CNV of three genes, and both al-
terations of six genes (Supplementary Table 12).
Sequencing achieved an average coverage of 1649�
(329�–3636�) in tumor and 468� (165�–1643�) in
normal samples (see Supplementary Table 7). A total of
67 mutations were identified: 38 missense mutations,
13 nonsense mutations, 11 frameshift mutations, three
in-frame deletions, and two splice site mutations (see
Supplementary Table 8). TP53 was the most frequently
mutated gene (20 of 39 [51.3%]), followed by MEN1 (10
of 39 [25.6%]) and RB1 (nine of 39 [23.1%]).

Analysis of CNV status for the nine selected genes
identified gains in MYC (five of 39 [12.8%]) and losses in
RB1 (four of 39 [10.3%]) as the most frequent alter-
ations. The comparison between discovery and valida-
tion set is reported in Supplementary Table 13.

Prevalence of Gene Mutations and Copy Number
Alterations in the Three Different Molecular
Clusters

Considering the whole series of 67 cases (35 ACs and
32 LCNECs), the three expression profile clusters
showed differences in mutation and CNV frequency for
specific genes (Fig. 2C). Mutations were present in 56 of
67 cases (see Supplementary Table 8). All 21 patients in
C1 harbored mutations, whereas three of 22 in C2 and
eight of 24 in C3 had no mutations. Different distribu-
tions were identified for TP53 and RB1 alterations (each
p < 0.0001), SWI/SNF related, matrix associated, actin
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dependent regulator of chromatin, subfamily a, member
2 gene (SMARCA2) (p ¼ 0.043) and MEN1 (p ¼ 0.008)
mutations, and phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha gene (PIK3CA) (p ¼ 0.035)
alterations (Table 2). C1 was characterized by concur-
rent TP53 and RB1 alterations (21 of 21; 100%); also
peculiar to this cluster were alterations in PIK3CA (five
of 21 [23.8%], p ¼ 0.038) and SMARCA2 (four of 21
[19.0%], p ¼ 0.047). C2 showed TP53 alterations as the
most frequent event (nine of 22 [40.9%]), followed by
MEN1 (five of 22 [22.7%]) and RB1 (four of 22 [18.2%]).
C3 had MEN1 mutation as the most frequent event (nine
of 24 [37.5%]), followed by TP53 alterations (four of 24
[16.7%]), whereas no RB1 anomaly was displayed.
Expression Levels and Immunohistochemistry of
Menin and Rb

Menin and Rb mRNA levels were assessed in all 67
samples. For each sample, normalized log-transformed
next-generation sequencing counts were compared be-
tween mRNA expression clusters by Kruskal-Wallis test.
RB1 and MEN1 mRNAs showed differential expression
between clusters (each p < 0.0001) (see Fig. 3A). In
particular, MEN1 mRNA level was very low in 24 sam-
ples, of which 17 were in C3 (17 of 24; 70.8%) and seven
were in C2 (seven of 22; 31.8%), whereas RB1 mRNA
level was very low in all C1 samples (see Fig. 3A). All 14
samples harboring MEN1 mutations showed very low
MEN1 mRNA.

All cases were immunostained for menin and Rb, and
nuclear negativity was interpreted as abnormal (repre-
sentative cases in Fig. 3B). Both MEN1 and RB1 dis-
played strong correlation between mRNA levels and
protein immunolabeling (p < 0.00001 [Supplementary
Fig. 7]).

Lack of menin nuclear immunostaining was detec-
ted in 24 of 67 cases (35.8%), including the seven
samples in C2 and the 17 in C3 that had low mRNA
levels, whereas all cases in C1 had positive immuno-
staining. A direct correlation between presence of
mutations, low mRNA level, and loss of protein nuclear
immunostaining was observed (p < 0.0001). In detail,
all 14 cases with MEN1 mutation, including 11 ACs and
three LCNECs, had low mRNA levels and negative nu-
clear immunostaining; of these 14 cases, the three
LCNECs and six ACs were in C3 whereas five ACs were
in C2. Interestingly, 10 cases were wild-type for MEN1
at sequencing; nine ACs belonging to C3 and one
LCNEC belonging to C2, showed loss of nuclear menin,
suggesting the existence of additional mechanisms
of MEN1 inactivation.34 All cases in C1 were MEN1
wild-type at sequencing and had positive menin
immunostaining.36
Lack of Rb nuclear immunostaining was found in all
21 samples of C1 (20 LCNECs and one AC), with
concomitant low mRNA levels and biallelic inactivation
of RB1 owing to homozygous deletion in five cases or
heterozygous mutation and loss of the wild-type allele in
16 cases (Supplementary Table 14 and see also Fig. 2).
Conversely, all samples in C2 and C3 had positive nu-
clear immunostaining, including four cases in C2 with
RB1 heterozygous mutations and retention of the wild-
type allele.

Discussion
It has been suggested that high-grade neuroendo-

crine carcinomas may represent a progression of ma-
lignancy of preexisting carcinoids.13 Indeed, recent
genomic and transcriptomic data indicate that ACs are
hybrid tumors sharing genomic features with both low-
grade (TCs) and high-grade (LCNECs and SCLCs)
neuroendocrine neoplasms,8 and that LCNECs may be
subdivided in at least two molecular subgroups, one of
which shows molecular similarities with SCLCs.7,9,14 This
prompted us to perform a direct comparison of molec-
ular alterations of ACs and LCNECs, which is lacking in
literature.

The comparative transcriptomic analysis of ACs and
LCNECs reported herein discriminated three transcrip-
tional clusters, defined as C1, C2, and C3, which also
showed specific genomic patterns (Fig. 4).

C3 was an AC-enriched cluster that included 20 ACs
(83.3%) and four LCNECs (16.7%). MEN1 mutations
were the most frequent events (nine of 24 [37.5%]),
followed by TP53 mutations (16.7%). No case had RB1
alterations. Interestingly, three of the four LCNECs in this
cluster harbored MEN1 mutations, which are relatively
rare in LCNECs, in which they account for 4% of
cases.8,35 That MEN1 alterations may represent a major
event in this cluster is suggested by loss of menin nu-
clear immunostaining in most cases (18 of 24 [75.0%]),
including nine samples harboring a MEN1 mutation and
nine that were determined to be wild-type, suggesting
the existence of additional inactivation mechanisms.34

Indeed, the immunohistochemical findings in LNETs of
the present series parallel those in pancreatic neuroen-
docrine neoplasms, in which of 80% of cases lacking
menin nuclear immunostaining, only 30% revealed
MEN1 mutations by sequencing analysis,36 and subse-
quent whole-genome analysis showed gross chromo-
some 11 alterations in many cases.37

C1 was an LCNEC-enriched cluster consisting of 20
LCNECs and one AC. All cases in this cluster had con-
current inactivation of TP53 and RB1 genes (100%) and
lacked MEN1 mutations. All samples showed low RB1
mRNA and loss of nuclear immunostaining for Rb pro-
tein. Other frequent alterations in C1 were found in



Figure 4. Outline of main differences between the three clusters of the lung neuroendocrine tumors. Cluster 3 is mainly
composed of atypical carcinoids (ACs), is Rb proficient, features frequent menin 1 gene (MEN1) and rare retinoblastoma 1
gene (TP53) mutations, and displays high levels of oxidative metabolism. Cluster 1 is composed almost exclusively of large
cell neuroendocrine carcinomas (LCNECs), has Rb loss of expression, always features TP53 and RB1 inactivation, and displays
high levels of cell cycle deregulation. Cluster 2 has an intermediate transcriptional profile compared with C1 and C3 and is
composed of both ACs (one-third of which bear a MEN1 mutation) and LCNECs (featuring TP53 mutation but retaining Rb
expression). profile: neg, negative staining in all cases; low, negative staining in most cases; mid, similar proportion of
positive and negative cases; high, positive staining in most cases; mut, mutation; MYC, v-myc avian myelocytomatosis viral
oncogene homolog gene.
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SMARCA2 (19.0%), STK11, KEAP1, and v-myc avian
myelocytomatosis viral oncogene lung carcinoma
derived homolog gene (MYCL1) (each 14.3%) genes.

C2 showed intermediate features between C1 and C3.
This group included 14 ACs (64%) and eight LCNECs
(36%), in which mutations in TP53 was the most
frequent event (41%), followed by mutations in MEN1
(23%) and RB1 (18%) genes. Menin nuclear immuno-
staining was lost in six samples, comprising the five
harboring MEN1 mutations and one MEN1 wild-type.
Interestingly, nuclear immunostaining of Rb was
retained in all cases in this cluster, including the four
that harbored a mutated allele but retained the normal
allele, supporting the central role of the biallelic inacti-
vation of RB1 in the transcriptomic shift from C2 to C1.

A comparison of our clusters with the subsets of
Rekhtman et al.,35 and George et al.,9 both comprising
only LCNECs, has identified some interesting overlap. Of
note, Rekhtman et al. defined those LCNECs harboring
MEN1 mutations as a third minor subset of “carcinoid-
like” LCNECs, and these cases were part of our AC-
predominant C3.35 Our C1 LCNEC-enriched cluster with
concurrent inactivation of TP53 and RB1 genes and
lacking MEN1 mutations coincide with both the SCLC-
like LCNEC subtype of Rekhtman et al.35 and the type
II LCNECs of George et al.9 Interestingly, other frequent
alterations found in our C1 were SMARCA2, STK11,
KEAP1, and MYCL1. As these genes are frequently altered
in NSCLCs, Rekhtman et al. classified cases harboring
these alterations and lacking concurrent RB1/TP53
inactivation as NSCLC-like LCNEC.35 Similarly, George
et al. suggested that these alterations are typical of their
type II LCNECs, but clearly reported that they had no
transcriptional relationship with NSCLCs.9 Furthermore,
inactivation of TP53 with retained Rb immunostaining
notable to our C2, are characteristics of the NSCLC-like
subtype of Rekhtman et al. and the type I of George
et al.9,35 Notably, our finding that these alterations may
occur in association with concurrent RB1/TP53 inacti-
vation is not surprising, as several cases in the series of
both Rekhtman et al. and George et al. displayed the
same phenomenon.9,35

The identification of three clusters of ACs and
LCNECs, two of which were enriched for either AC or
LCNEC and the third with intermediate features, sug-
gests the existence of a progression of malignancy for a
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proportion of ACs into LCNECs. This is further supported
by the fact that the intermediate C2 cluster was
composed of two subclusters. The first (C2a) was closer
to C1 because of both a similarly high Ki67 index (mean
60%) and the presence of LCNECs with TP53 mutations
associated with heterozygous RB1 alterations. The sec-
ond (C2b), which is closer to C3, is composed entirely of
ACs with a mean Ki67 index of 12% and enriched for
MEN1 mutations. The ACs in C2, especially those sharing
the C2a subcluster with LCNECs, might overlap with the
recently proposed “supracarcinoids,” which were iden-
tified by Alcala et al. through supervised machine
learning of genomic and transcriptomic data.38 Indeed,
supracarcinoids were defined as a subgroup of LNETs
with a clear carcinoid histopathologic pattern but with
molecular characteristics similar to those of LCNECs.38

This further supports the hypothesis that carcinoids
may evolve into carcinomas by accumulation of genetic
anomalies. A recent publication explicitly suggested the
existence of an evolution from AC to LCNEC on the basis
of clustering of mutations and CNVs.13 This might be
especially true for a fraction of ACs that do not display
MEN1 loss but show TP53 alterations.

The three clusters described here also differed from a
clinicopathologic point of view, including Ki67 prolifer-
ation index and cancer-specific survival. C1 had a mean
Ki67 index of 66% versus 37% and 21% for C2 and C3,
respectively. Follow-up data were available for 56 pa-
tients. Patients in C1 had the shortest survival (median
19 months), whereas patients in C2 had a median sur-
vival of 47 months and patients in C3 did not reach the
median survival during follow-up.

In conclusion, our study shows that ACs and LCNECs
comprise three different molecular diseases of potential
clinical relevance, one AC-enriched group in which MEN1
inactivation plays a major role, one LCNEC-enriched
group whose hallmark is RB1 inactivation, and one
group with intermediate features. Indeed, it has been
reported that carcinoids harboring MEN1 mutations, loss
of heterozygosity, and low mRNA levels had shorter
overall survival,34 whereas the independent poor prog-
nostic role of RB1 inactivation is common to AC, LCNEC,
and SCLC.8 Molecular profiling with a combined immu-
nohistochemical and mutational analysis using routinely
available paraffin-embedded tissues may complement
histological examination to provide better diagnostic
definition and prognostic stratification of LNETs that
would be helpful for their clinical management.
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Abstract

Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations 

underlying the pathogenesis of these tumors have not been systematically studied so far. Here we 

perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) 

sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling 

genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 

22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In 

contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations 

are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly 

aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These 

data also suggest that inactivation of chromatin remodeling genes is sufficient to drive 

transformation in pulmonary carcinoids.

Introduction

Pulmonary carcinoids are neuroendocrine tumors that account for about 2% of pulmonary 

neoplasms. Based on the WHO classification of 2004, carcinoids can be subdivided in 
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typical or atypical, the latter ones being very rare (about 0.2%)1. Most carcinoids can be 

cured by surgery; however, inoperable tumors are mostly insensitive to chemo- and radiation 

therapies1. Apart from few low-frequency alterations, such as mutations in MEN11, 

comprehensive genome analyses of this tumor type have so far been lacking.

Here we conduct integrated genome analyses2 on data from chromosomal gene copy number 

of 54 tumors, genome and exome sequencing of 29 and 15 tumor-normal pairs respectively, 

as well as transcriptome sequencing of 69 tumors. Chromatin-remodeling is the most 

frequently mutated pathway in pulmonary carcinoids; the genes MEN1, PSIP1 and ARID1A 

were recurrently affected by mutations. Specifically, covalent histone modifiers and subunits 

of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively. By 

contrast, mutations of TP53 and RB1 are only found in 2 out of 45 cases, suggesting that 

these genes are not main drivers in pulmonary carcinoids.

Results

In total, we generated genome/exome sequencing data for 44 independent tumor-normal 

pairs, and for most of them, also RNAseq (n=39, 69 in total), and SNP 6.0 (n=29, 54 in 

total) data (Supplementary Table S1). Although no significant focal copy number 

alterations were observed across the tumors analyzed, we detected a copy number pattern 

compatible with chromothripsis3 in a stage-III atypical carcinoid of a former smoker (Fig. 
1a; Supplementary Fig. S1). The intensely clustered genomic structural alterations found in 

this sample were restricted to chromosomes 3, 12, and 13, and led to the expression of 

several chimeric transcripts (Fig. 1b; Supplementary Table S2). Some of these chimeric 

transcripts affected genes involved in chromatin remodeling processes, including out-of-

frame fusion transcripts disrupting the genes, ARID2, SETD1B, and STAG1. Through the 

analyses of genome and exome sequencing data, we detected 529 non-synonymous 

mutations in 494 genes, which translates to a mean somatic mutation rate of 0.4 mutations 

per megabase (Mb) (Fig. 1c; Supplementary Data 1), which is much lower than the rate 

observed in other lung tumors (Fig. 1c)2,4,5. As expected, and in contrast to small-cell lung 

cancer (SCLC), no smoking-related mutation signature was observed in the mutation pattern 

of pulmonary carcinoids (Fig. 1d).

We identified MEN1, ARID1A and EIF1AX as significantly mutated genes2 (q-value<0.2, 

see Methods section) (Fig. 2a; Supplementary Table S1 and S3; Supplementary Data 1). 

MEN1 and ARID1A play important roles in chromatin remodeling processes. The tumor 

suppressor MEN1 physically interacts with MLL and MLL2 to induce gene transcription6. 

Specifically, MEN1 is a molecular adaptor that physically links MLL with the chromatin-

associated protein PSIP1, an interaction that is required for MLL/MEN1-dependent 

functions7. MEN1 also acts as a transcriptional repressor through the interaction with 

SUV39H18. We observed mutually exclusive frame-shift and truncating mutations in MEN1 

and PSIP1 in 6 cases (13.3%), which were almost all accompanied by loss of heterozygosity 

(LOH) (Supplementary Fig. S2). We also detected mutations in histone methyltransferases 

(SETD1B, SETDB1 and NSD1) and demethylases (KDM4A, PHF8 and JMJD1C), as well as 

in the following members of the Polycomb complex9 (Supplementary Table S1 and S2; 

Supplementary Data 1): CBX6, which belongs to the Polycomb repressive complex 1 
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(PRC1); EZH1, which is part of the Polycomb repressive complex 2 (PRC2); and YY1, a 

member of the PHO repressive complex 1 that recruits PRC1 and PRC2. CBX6 and EZH1 

mutations were also accompanied by LOH (Supplementary Fig. S2). In addition, we also 

detected mutations in the histone modifiers BRWD3 and HDAC5 in one sample each. In 

total, 40% of the cases carried mutually exclusive mutations in genes that are involved in 

covalent histone modifications (q-value=8x10-7, see Methods section) (Fig. 2a; 
Supplementary Table S4). In order to evaluate the impact of these mutations on histone 

methylation, we compared the levels of the H3K9me3 and H3K27me3 on 7 mutated and 6 

wild-type samples, and observed a trend towards lower methylation in the mutated cases 

(Table 1; Fig. 2b).

Truncating and frame-shift mutations in ARID1A were detected in 3 cases (6.7%). ARID1A 

is one of the two mutually exclusive ARID1 subunits, believed to provide specificity to the 

ATP-dependent SWI/SNF chromatin-remodeling complex10,11. Truncating mutations of this 

gene have been reported at high frequency in several primary human cancers12. In total, 

members of this complex were mutated in mutually exclusive fashion in 22.2% of the 

specimens (q-value=8x10-8, see Methods section) (Fig. 2a; Supplementary Table S4). 

Among them were the core subunits SMARCA1, SMARCA2, and SMARCA4, which carry the 

ATPase activity of the complex, as well as the subunits ARID2, SMARCC2, SMARCB1, and, 

BCL11A (Fig. 2a; Supplementary Table S1 and S2; Supplementary Data 1)13,14. Another 

recurrently affected pathway was sister-chromatid cohesion during cell cycle progression 

with the following genes mutated (Fig. 2a; Supplementary Table S1 and S2; Supplementary 

Data 1; Supplementary Fig. S3): the cohesin subunit STAG115, the cohesin loader NIPBL16; 

the ribonuclease and microRNA processor DICER, necessary for centromere 

establishment17; and ERCC6L, involved in sister chromatid separation18. In addition, 

although only few chimeric transcripts were detected in the 69 transcriptomes analyzed 

(Supplementary Table S5), we found one sample harboring an inactivating chimeric 

transcript leading to the loss of the mediator complex gene MED24 (Supplementary Fig. 
S4) that interacts both physically and functionally with cohesin and NIPBL to regulate gene 

expression19. In summary, we detected mutations in chromatin remodeling genes in 23 

(51.1%) of the samples analyzed. The specific role of histone modifiers in the development 

of pulmonary carcinoids was confirmed by the lack of significance of these pathways in 

SCLC2 (Supplementary Table S4). This was further supported by a gene expression 

analysis including 50 lung adenocarcinomas (unpublished data), 42 SCLC2,20, and the 69 

pulmonary carcinoids included in this study (Supplementary Data 2). Consensus k-means 

clustering revealed that although both SCLC and pulmonary carcinoids are lung 

neuroendocrine tumors, both tumor types as well as adenocarcinomas formed statistically 

significant separate clusters (Fig. 3a). In support of this notion, we recently reported that the 

early alterations in SCLC universally affect TP53 and RB12, whereas in this study these 

genes were only mutated in two samples (Fig 2a; Supplementary Table S1; Supplementary 

Data 1). Moreover, when examining up- and down-regulated pathways in SCLC versus 

pulmonary carcinoids by Gene Set Enrichment Analysis (GSEA)21, we found that in line 

with the pattern of mutations, the RB1 pathway was statistically significantly altered in 

SCLC (q-value=5x10-4, see Methods section) but not in pulmonary carcinoids (Fig. 3b; 
Supplementary Table S6).
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Another statistically significant mutated gene was the eukaryotic translation initiation factor 

1A (EIF1AX) mutated in 4 cases (8.9%). Additionally, SEC31A, WDR26, and the E3-

ubiquitin ligase HERC2 were mutated in two samples each. Further supporting a role of E3 

ubiquitin ligases in the development of pulmonary carcinoids we found mutations or 

rearrangements affecting these genes in 17.8% of the samples analyzed (Fig. 2a; 

Supplementary Table S1 and S7; Supplementary Data 1). All together, we have identified 

candidate driver genes in 73.3% of the cases. Of note, we did not observe any genetic 

segregation between typical or atypical carcinoids, neither between the expression clusters 

generated from the two subtypes, nor between these clusters and the mutated pathways 

(Supplementary Fig. S5). However, it is worth mentioning that only 9 atypical cases were 

included in this study. The spectrum of mutations found in the discovery cohort, was further 

validated by transcriptome sequencing of an independent set of pulmonary carcinoid 

specimens (Supplementary Table S1 and S8). Due to the fact that many nonsense and 

frame-shift mutations may result in nonsense-mediated decay22,23, the mutations detected by 

transcriptome sequencing were only missense. Due to this bias, accurate mutation 

frequencies could not be inferred from these data.

Discussion

This study defines recurrently mutated sets of genes in pulmonary carcinoids. The fact that 

almost all of the reported genes were mutated in a mutually exclusive manner and affected a 

small set of cellular pathways, defines these as the key pathways in this tumor type. Given 

the frequent mutations affecting the few signaling pathways described above and the almost 

universal absence of other cancer mutations, our findings support a model where pulmonary 

carcinoids are not early progenitor lesions of other neuroendocrine tumors, such as small-

cell lung cancer or large-cell neuroendocrine carcinoma, but arise through independent 

cellular mechanisms. More broadly, our data suggest that mutations in chromatin 

remodeling genes, which in recent studies were found frequently mutated across multiple 

malignant tumours24, are sufficient to drive early steps in tumorigenesis in a precisely 

defined spectrum of required cellular pathways.

Methods

Tumor specimens

The study as well as written informed consent documents had been approved by the 

Institutional Review Board of the University of Cologne. Additional biospecimens for this 

study were obtained from the Victorian Cancer Biobank, Melbourne, Australia; the 

Vanderbilt-Ingram Cancer Center, Nashville, USA; and Roy Castle Lung Cancer Research 

Programme, The University of Liverpool Cancer Research Center, Liverpool, UK. The 

Institutional Review Board (IRB) of each participating institution approved collection and 

use of all patient specimens in this study.

Nucleic acid extraction and sample sequencing

All samples in this study were reviewed by expert pathologists. Total RNA and DNA were 

obtained from fresh-frozen tumor and matched fresh-frozen normal tissue or blood. Tissue 
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was frozen within 30 min after surgery and was stored at –80 °C. Blood was collected in 

tubes containing the anticoagulant EDTA and was stored at –80 °C. Total DNA and RNA 

were extracted from fresh-frozen lung tumor tissue containing more than 70% tumor cells. 

Depending on the size of the tissue, 15–30 sections, each 20 μm thick, were cut using a 

cryostat (Leica) at –20 °C. The matched normal sample obtained from frozen tissue was 

treated accordingly. DNA from sections and blood was extracted using the Puregene 

Extraction kit (Qiagen) according to the manufacturer's instructions. DNA was eluted in 1× 

TE buffer (Qiagen), diluted to a working concentration of 150 ng—l and stored at –80 °C. 

For whole exome sequencing we fragmented 1 μg of DNA with sonification technology 

(Bioruptor, diagenode, Liège, Belgium). The fragments were endrepaired and adaptor-

ligated, including incorporation of sample index barcodes. After size selection, we subjected 

the library to an enrichment process with the SeqCap EZ Human Exome Library version 2.0 

kit (Roche NimbleGen, Madison, WI, USA). The final libraries were sequenced with a 

paired-end 2×100 bp protocol. On average, 7 Gb of sequence were produced per normal, 

resulting in 30x coverage of more than 80% of target sequences (44Mb). For better 

sensitivity, tumors were sequenced with 12Gb and 30x coverage of more than 90%. We 

filtered primary data according to signal purity with the Illumina Realtime Analysis 

software. Whole genome sequencing was also performed using a read length of 2x 100bp for 

all samples. On average, 110 Gb of sequence were produced per sample, aiming a mean 

coverage of 30x for both tumor and matched-normal. RNAseq was performed on cDNA 

libraries prepared from PolyA+ RNA extracted from tumor cells using the Illumina TruSeq 

protocol for mRNA. The final libraries were sequenced with a paired-end 2×100 bp protocol 

aiming at 8.5 Gb per sample, resulting on a 30x mean coverage of the annotated 

transcriptome. All the sequencing was carry on an Illumina HiSeq™ 2000 sequencing 

instrument (Illumina, San Diego, CA, USA).

Sequence data processing and mutation detection

Raw sequencing data are aligned to the most recent build of the human genome (NCBI build 

37/hg19) using BWA (version: 0.5.9rc1)25 and possible PCR-duplicates are subsequently 

removed form the alignments. Somatic mutations were detected using our in-house 

developed sequencing analysis pipeline. In brief, the mutation calling algorithm incorporates 

parameters such as local copy number profiles, estimates of tumor purity and ploidy, local 

sequencing depth, as well as the global sequencing error into a statistical model with which 

the presence of a mutated allele in the tumor is determined. Next, the absence of this variant 

in the matched normal is assessed by demanding that the corresponding allelic fraction is 

compatible with the estimated background sequencing error in the normal. In addition, we 

demand that the allelic fractions between tumor and normal differ significantly. To finally 

remove artificial mutation calls, we apply a filter that is based on the forward-reverse bias of 

the sequencing reads. Further details of this approach are given in Peifer et al.2

Genomic rearrangement reconstruction from paired-end data

To reconstruct rearrangements from paired-end data, we refined our initial method2 by 

adding breakpoint-spanning reads. Here, locations of encompassing read pairs are screened 

for further reads where only one pair aligns to the region and the other pair either does not 

align at all or is clipped by the aligner. These reads are then realigned using BLAT to a 
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1000bp region around the region defined by the encompassing reads. Rearrangements 

confirmed by at least one spanning read are finally reported. To filter for somatic 

rearrangements, we subtracted those regions where rearrangements are present in the 

matched-normal and in all other sequenced normals within the project.

Analysis of significantly mutated genes and pathways

The analysis of significantly mutated genes is done in a way that both gene expression and 

the accumulation of synonymous mutations are considered to obtain robust assessments of 

frequently mutated, yet biologically relevant genes. To this end, the overall background 

mutation rate is determined first, from which the expected number of mutations for each 

gene is computed under the assumption of a purely random mutational process. This gene 

specific expected number of mutations defines the underlying null model of our statistical 

test. To account for misspecifications, e.g., due to a local variation of mutation rates, we also 

incorporated the synonymous to non-synonymous ratio into a combined statistical model to 

determine significantly mutated genes. Since mutation rates in non-expressed genes are 

often high than the genome-wide background rate2,26, genes that are having a median FPKM 

value less than one in our transcriptome sequencing data are removed prior testing. To 

account for multiple hypothesis testing, we are using the Benjamini-Hochberg approach27. 

Mutation data of the total of 44 samples, for which either WES or WGS was performed, 

were used for this analysis.

In case of the pathway analysis, gene lists of the methylation- and the SWI/SNF complex 

were obtained from recent publications9,13,14,28. To assess whether mutations in these 

pathways are significantly enriched, all genes of the pathway are grouped together as if they 

represent a ”single gene” and subsequently tested if the total number of mutation exceed 

mutational background of the entire pathway. To this end, the same method as described 

above was used. Mutation data of the total of 44 samples, for which either WES or WGS 

was performed, were used for this analysis.

Analysis of chromosomal gene copy number data

Hybridization of the Affymetrix SNP 6.0 arrays was carried out according to the 

manufacturers' instructions and analyzed as follows: raw signal intensities were processed 

by applying a log-linear model to determine allele-specific probe affinities and probe-

specific background intensities. To calibrate the model, a Gauss-Newton approach was used 

and the resulting raw copy number profiles are segmented by applying the circular binary 

segmentation method29.

Analysis of RNAseq data

For the analysis of RNAseq data, we have developed a pipeline that affords accurate and 

efficient mapping and downstream analysis of transcribed genes in cancer samples (Lynnette 

Fernandez-Cuesta and Ruping Sun, personal communication). In brief, paired-end RNAseq 

reads were mapped onto hg19 using a sensitive gapped aligner, GSNAP30. Possible 

breakpoints were called by identifying individual reads showing split-mapping to distinct 

locations as well as clusters of discordant read pairs. Breakpoint assembly was performed to 
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leverage information across reads anchored around potential breakpoints. Assembled contigs 

were aligned back to the reference genome to confirm bona fide fusion points.

Dideoxy sequencing

All non-synonymous mutations found in the genome/exome data were checked in RNAseq 

data when available. Genes recurrently mutated involved in pathways statistically 

significantly mutated, or interesting because of their presence in other lung neuroendocrine 

tumors, were selected for validation. 158 mutations were considered for validation: 115 

validated and 43 did not (validation rate 73%). Sequencing primer pairs were designed to 

enclose the putative mutation (Supplementary Data 1), or to encompass the candidate 

rearrangement (Supplementary Table S7) or chimeric transcript (Supplementary Table 
S2 and S5). Sequencing was carried out using dideoxy-nucleotide chain termination 

(Sanger) sequencing, and electropherograms were analyzed by visual inspection using 4 

Peaks.

Gene expression data analyses

Unsupervised consensus clustering was applied to RNAseq data of 69 pulmonary carcinoids, 

50 AD, and 42 SCLC2,20 samples. The 3000 genes with highest variation across all samples 

were filtered out before performing consensus clustering. We used the clustering module 

from GenePattern31 and the consensus CDF32,33. Significance was obtained by using 

SigClust34. Fisher's exact test35 was used to check for associations between clusters and 

histological subtypes. GSEA21 were performed on 69 pulmonary carcinoids and 42 

SCLC2,20 samples; and the gene sets oncogenic signatures were used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genomic characterization of pulmonary carcinoids. (a) CIRCOS plot of the chromothripsis 

case. The outer ring shows chromosomes arranged end to end. Somatic copy number 

alterations (gains in red and losses in blue) detected by 6.0 SNP arrays are depicted in the 

inside ring. (b) Copy numbers and chimeric transcripts of affected chromosomes. 

Segmented copy number states (blue points) are shown together with raw copy number data 

averaged over 50 adjacent probes (grey points). To show the different levels of strength for 

the identified chimeric transcripts all curves are scaled according to the sequencing coverage 
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at the fusion-point. (c) Mutation frequency detected by genome and exome sequencing in 

pulmonary carcinoids (PCA). Each blue dot represents the number of mutations per 

megabase in one pulmonary carcinoid sample. Average frequencies are also shown for 

adenocarcinomas (AD), squamous (SQ), and small-cell lung cancer (SCLC) base on 

previous studies2,4,5 (d) Comparison of context independent transversion and transition rates 

(an overall strand symmetry is assumed) between rates derived from molecular evolution 

(evol)36, from a previous SCLC sequencing study2, and from the pulmonary carcinoids 

(PCA) genome and exome sequencing. All rates are scaled as such that their overall sum is 

one.
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Figure 2. 
Significant affected genes and pathways in pulmonary carcinoids. (a) Significantly mutated 

genes and pathways identified by genome (n=29), exome (n=15) and transcriptome (n=69) 

sequencing. The percentage of pulmonary carcinoids with a specific gene or pathway 

mutated is noted at the right side. The q-values of the significantly mutated genes and 

pathways are shown in brackets (see Methods section). Samples are displayed as columns 

and arranged to emphasize mutually exclusive mutations. (b) Methylation levels of 

H3K9me3 and H3K27me3 in pulmonary carcinoids. Representative pictures of different 
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degrees of methylation (high, intermediate, and low) for some of the samples summarized in 

Table 1. The mutated gene is shown in italics at the bottom right part of the correspondent 

picture. Wild-type samples are denoted by WT.
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Figure 3. 
Expression data analysis of pulmonary carcinois based on RNAseq data. (a) Consensus 

Kmeans clustering32,33 using RNAseq expression data of 50 adenocarcinomas (AD, in 

blue), 42 small-cell lung cancer (SCLC, in red), and 69 pulmonary carcinoids (PCA, in 

purple) identified 3 groups using the clustering module from GenePattern31 and consensus 

CDF32,33 (left panel). The significance of the clustering was evaluated by using SigClust34 

with a p<0.0001. Fisher's exact test35 was used to check associations between the clusters 

and the histological subtypes (right panel). (b) Gene Set Enrichment Analysis (GSEA)21 for 
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SCLC versus PCA using RNAseq expression data. Low gene expression is indicated in blue 

and high expression, in red. On the right side are named the altered pathways in PCA 

(green) and SCLC (purple).
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Table 1

Overview of samples annotated for mutations in genes involved in histone methylation, and correspondent 

levels of H3K9me3 and H3K27me3 detected by immunohistochemistry.

SAMPLE MUTATION H3K9me3 H3K27me3

S02333 JMJD1C_H954N Intermediate Low

S01502 KDM4A_I168T Intermediate N/A

S02323 MEN1_e3+1 and LOH Low Low

S02339 NSD1_A1047G Intermediate Low

S02327 CBX6_P302S and LOH Low Low

S01746 EZH1_R728G and LOH Low Intermediate

S02325 YY1_E253K Low Intermediate

S01501 Wild type N/A High

S01731 Wild type Low Low

S01742 Wild type High High

S02334 Wild type Intermediate High

S02337 Wild type High High

S02338 Wild type High Intermediate
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ARTICLE

Integrative genomic profiling of large-cell
neuroendocrine carcinomas reveals distinct
subtypes of high-grade neuroendocrine lung
tumors
Julie George et al.#

Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung

cancers, but their precise relationship has remained unclear. Here we perform a compre-

hensive genomic (n= 60) and transcriptomic (n= 69) analysis of 75 LCNECs and identify

two molecular subgroups: “type I LCNECs” with bi-allelic TP53 and STK11/KEAP1 alterations

(37%), and “type II LCNECs” enriched for bi-allelic inactivation of TP53 and RB1 (42%).

Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas,

no transcriptional relationship was found; instead LCNECs form distinct transcriptional

subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neu-

roendocrine profile with ASCL1high/DLL3high/NOTCHlow, type II LCNECs bear TP53 and RB1

alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a

pattern of ASCL1low/DLL3low/NOTCHhigh, and an upregulation of immune-related pathways.

In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them

from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung

tumors.
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Molecular characterization studies have provided invalu-
able insight into the relationship between the major
lung tumor subtypes1–7. These studies showed that

morphologically defined lung adenocarcinomas, squamous cell
carcinomas, and small cell carcinomas have distinct molecular
phenotypes based upon their somatically altered genes7. Fur-
thermore, global transcriptional analyses have revealed intra-
group consistency, as well as substantial differences in the pat-
terns of expressed genes, which led to the discovery of novel
intra-group subtypes2,3,8–11 and to the elimination of previous
lung tumor categories (e.g., large-cell carcinoma)7. Of the
remaining lung cancer subtypes, only large-cell neuroendocrine
carcinomas (LCNECs) have so far not been characterized in
depth using both transcriptomic, as well as genomic approaches.

LCNECs account for 2–3% of all resected lung cancers and
belong to the category of neuroendocrine lung tumors, which also
includes pulmonary carcinoids (PCa) and small cell lung cancer
(SCLC)12,13. Contrary to pulmonary carcinoids, LCNEC and SCLC
are clinically aggressive tumors presenting in elderly heavy-
smokers with 5-year survival rates below 15–25% (LCNEC) and
5% (SCLC), respectively12,13. While therapy for both typical and
atypical carcinoids and SCLC is primarily surgery and che-
motherapy (in the case of SCLC), chemotherapy has limited effi-
cacy in LCNEC patients and no standard treatment regimen exists
for this tumor type14. Thus, LCNECs share both commonalities
(e.g., neuroendocrine differentiation) and discrepancies (e.g., lim-
ited response to chemotherapy) with SCLC; however, the under-
lying molecular basis of these shared and distinct features is only
poorly understood. Further complicating the histological classifi-
cation, LCNECs are sometimes found combined with adenocarci-
noma or squamous cell carcinoma and some SCLCs are combined
with a component of LCNEC12,13. Thus, defining the molecular
patterns of this tumor type presents the opportunity to not only
reveal possible novel therapeutic targets, but also help clarifying the
ontogeny and relationship of lung tumors in general.

Previous efforts in characterizing LCNECs through targeted
sequencing of selected cancer-related genes15–17 and through gene
expression profiling18 provided some first insights; however, global
genomic studies combined with transcriptomic analyses have so far
been lacking. Furthermore, given the lack of adequate therapeutic
strategies in LCNECs, a precise delineation of the molecular
boundaries between different neuroendocrine tumors is needed.
We therefore aimed to comprehensively dissect both the muta-
tional and the transcriptional patterns of this tumor type.

In this report, we show that LCNECs are composed of two
mutually exclusive subgroups, which we categorize as “type I
LCNECs” (with STK11/KEAP1 alterations) and “type II LCNECs”
(with RB1 alterations). Despite sharing genomic alterations with
lung adenocarcinomas and squamous cell carcinomas, type I
LCNECs exhibit a neuroendocrine profile with closest similarity
to SCLC tumors. While type II LCNECs reveal genetic resem-
blance to SCLC, these tumors are markedly different from SCLC
with reduced levels of neuroendocrine markers and high activity
of the NOTCH pathway. Conclusively, LCNECs represent a dis-
tinct subgroup within the spectrum of high-grade neuroendocrine
tumors of the lung, and our findings emphasize the importance of
distinguishing LCNECs from other lung cancers subtypes.

Results
Genomic alterations in LCNECs. We collected 75 fresh-frozen
tumor specimens from patients diagnosed with LCNEC under
institutional review board approval (Supplementary Data 1). All
tumors were thoroughly analyzed, and the histological features of
pulmonary LCNECs were confirmed by expert pathologists (E.B.,
W.T., R.B.) according to the 2015 WHO classification13

(Supplementary Data 2). Most tumors were obtained from cur-
rent or former heavy smokers, and enriched for stages I and II
(68%). Nineteen of 75 LCNECs included in this study showed
additional histological components of lung adenocarcinoma
(ADC) (n= 2), squamous cell carcinoma (SqCC) (n= 5) or
SCLC (n= 12) (Supplementary Data 1–2). In subsequent analyses
nucleic acids were extracted only from pure LCNEC regions
(Methods section).

Early genomic profiling studies employing targeted sequencing
of selected cancer-related genes aided in the identification of
some prevalent mutations in LCNECs15–17. In order to assess
globally all genomic alterations in LCNECs and to compare them
to those occurring in other lung tumors, we conducted whole-
exome sequencing (WES) of 55 LCNEC tumor-normal pairs; we
additionally performed whole-genome sequencing (WGS) in
those cases where sufficient material was available (n= 11), thus
amounting to sequencing data of 60 LCNECs in total (six tumors
were both, genome- and exome-sequenced, Supplementary
Fig. 1a). We furthermore performed Affymetrix 6.0 SNP array
analyses of 60 and transcriptome sequencing of 69 tumors
(Supplementary Data 1; Supplementary Fig. 1a). Despite initial
review to include cases with a microscopic tumor content of
>70%, sequencing data analysis revealed a median tumor purity
of 59.5% and a median ploidy of 2.8 (Supplementary Data 1,
Supplementary Fig. 1b, Methods section). On average, LCNECs
exhibited an exonic mutation rate of 8.6 non-synonymous
mutations per million base pairs and a C:G > A:T transversion
rate of 38.7% (Fig. 1a, Supplementary Data 1), indicative of
tobacco exposure1–6. We analyzed the signatures of mutational
processes19,20 in LCNECs, which confirmed a prominent
smoking-related signature (signature 419,20) that accounts for
the majority of all somatic mutations, and which is in general
comparable to most other lung tumors of heavy smokers
(Supplementary Fig. 1c–f, Supplementary Data 3).

Analyses of chromosomal gene copy numbers revealed
statistically significant amplifications of 1p34 (containing the
MYCL1 gene, 12%), 8p12 (containing FGFR1, 7%), 8q24.21
(containing MYC, 5%), 13q33 (containing IRS2, 3%), and 14q13
(containing NKX2-1, also known as TTF-1, 10%) (Q < 0.01,
Supplementary Fig. 2a; Supplementary Data 4–5, Methods
section). Statistically significant deletions affected CDKN2A
(9p21, 8%) and a putative fragile site at PTPRD (9p24, 7%)21.
While amplifications of NKX2-1 and FGFR1 frequently occur in
lung adenocarcinomas1,2,7,21 and squamous cell carcino-
mas3,7,21,22, respectively, MYCL1 amplifications are commonly
found in SCLC4–6,23. Thus, LCNECs harbor significant copy-
number alterations that occur in different lung cancer subtypes.

We next applied analytical filters to identify mutations with
biological relevance in the context of a high-mutation rate and
found eight significantly mutated genes (Q < 0.01, Methods section,
Fig. 1a, Supplementary Data 6–7). TP53 was the most frequently
mutated gene (92%), followed by inactivating somatic events in
RB1 (42%); bi-allelic alterations in both genes, TP53 and RB1—a
hallmark of SCLC4–6—were found in 40% of the cases (Supple-
mentary Fig. 2b, Supplementary Data 6–9). Notably, LCNECs with
admixtures of other histological components mostly had RB1
alterations (Fig. 1a). While genomic alterations in RB1 resulted in
loss-of-nuclear Rb1 expression (P < 0.0001, Fisher’s exact test,
Supplementary Fig. 3a), immunohistochemistry revealed that
absence of Rb1 was not only confined to the LCNEC component,
but also evident in the combined other histological subtype (6/7
cases, Supplementary Fig. 3b, Supplementary Data 2). This may
implicate shared genetic features between LCNECs and the
admixtures of other histological carcinoma types.

We furthermore identified—frequently deleterious—somatic
alterations in functionally relevant domains of STK11 (30%) and
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KEAP1 (22%)1–3 (Fig. 1a, Supplementary Fig. 4a, Supplementary
Data 6–9). Combined with loss-of-heterozygosity (LOH), bi-
allelic alterations of STK11 and KEAP1 were found in 37% of the
cases (Supplementary Fig. 2b, Supplementary Data 8). In those
cases where WGS was performed, we were able to identify larger
genomic rearrangements, which led to the inactivation of RB1,
STK11, or KEAP1 (Fig. 1a, Supplementary Fig. 4a, Supplementary
Data 9). Altogether, somatic alterations of RB1 and STK11/

KEAP1 were detected in 82% of the cases (n= 49) and occurred
in a mutually exclusive fashion (P < 0.0001, Fisher’s exact test,
Fig. 1a). We furthermore observed a trend toward inferior
outcome in patients with RB1-mutated tumors (P= 0.126, log-
rank test, Supplementary Fig. 4b). The genomic profiling thus
points to two distinct subgroups of LCNECs.

We additionally identified statistically significant mutations in
the metalloproteinases ADAMTS2 (15%) and ADAMTS12 (20%),
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assignments and somatic alterations in candidate genes are annotated for each sample according to the color panel below the image. The somatic mutation
frequencies for each candidate gene are plotted on the right panel. Mutation rates and the type of base-pair substitutions are displayed in the top and
bottom panel, respectively; a dashed black line indicates the average value. Significantly mutated genes and genes with a significant enrichment of
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Fig. 2 Gene expression studies on lung cancer subtypes. a A schematic description of the unsupervised consensus clustering approach is provided on the
left panel. The clustering results are displayed on the right panel as a heatmap, in which tumor samples are arranged in columns, grouped according to their
expression clustering class, annotated for the histological subtype and for the somatic alteration status. Expression values of genes identified by ClaNC
(Methods section) are represented as a heatmap; red and blue indicate high and low expression, respectively. Selected candidate genes are shown on the
right. b Significant enrichment of differentially expressed genes in signaling pathways is displayed for all clustering classes (P < 0.0001, Methods section). c
Expression values for key neuroendocrine differentiation markers are plotted for each clustering class as box-plots (median and interquartile range,
whiskers: min–max values). Dashed black lines indicate the threshold for low expression (Methods section). Q < 0.05 (#), significance determined by SAM
(Supplementary Dataset 12); P < 0.001 (***) Mann–Whitney U-test. d The correlation of each sample to the centroid of its clustering class was calculated
and displayed as box-plot (median and interquartile range, whiskers 5–95 percentile)
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and in GAS7 (12%) and NTM (10%) (Q < 0.01, Methods section,
Fig. 1a, Supplementary Fig. 4c, Supplementary Data 6–7), which
so far have not been reported as significantly mutated in any
other lung cancer subtype. The mutations affected functionally
important protein domains, which may suggest a relevant role in
the tumorigenesis of LCNECs (Supplementary Fig. 3c).

We also analyzed LCNECs for alterations in genes of known
tumor-specific functions (e.g., CREBBP, EP3003,4,6,21,
NOTCH3,6,21, MEN124, ARID1A1–3,21,24) (Supplementary Fig. 2b,
Supplementary Fig. 4d, Supplementary Data 6) and found
oncogenic mutations of RAS family genes (KRAS-G12V, -G12C,
NRAS-D57E, HRAS-G13R), NFE2L2 (2 cases with G31V and 1
case with E79Q) and BRAF (V600E, and G469V). Combined with
focal amplifications, RAS genes were affected in 10% of the
tumors (Fig. 1a; Supplementary Data 5–6). We also identified
several private in-frame fusion events, e.g., involving the kinases
NTRK1 and PTK6, which were, however, not recurrent
(Supplementary Fig. 5, Supplementary Data 10). Thus, LCNECs
harbor alterations of oncogenes which are commonly found in
lung adenocarcinomas, but usually absent in neuroendocrine
tumors like SCLC.

The distinct mutational patterns in LCNECs and the presence
of other histological components may suggest a high level of
intra-tumor heterogeneity. We analyzed the clonal distribution of
somatic alterations and determined the cancer cell fraction (CCF)
of each somatic mutation call (Methods section). Despite the fact
that some LCNECs were found with admixtures of other
histological subtypes (Fig. 1a, Supplementary Data 1–2), our
studies on the LCNEC component of such composite tumors
pointed to little intra-tumor heterogeneity with a median of 7%
sub-clonal mutations per sample (Supplementary Fig. 2b–c,
Supplementary Data 1, Methods section). Furthermore, all
relevant and significant mutations were found to be clonal within
the tumor, thus suggesting these alterations as early events during
tumorigenesis (Fig. 1b, Supplementary Data 6).

In summary, genome sequencing revealed distinct genomic
profiles in LCNECs. While certain alterations (e.g., RB1, MYCL1)
resemble patterns found in SCLC4–6,23, others are typical of lung
adenocarcinoma or squamous cell carcinomas (e.g., STK11,
KEAP1, NKX2-1, RAS, BRAF, and NFE2L2)1–3,7,21. Thus,
LCNECs appear to divide into molecularly defined subsets of
tumors with genomic similarities to other major lung cancer
subtypes.

Transcriptional profiles of LCNECs and other lung cancers.
Our sequencing efforts have revealed genomic alterations in
LCNECs that were previously known as canonical alterations in
either, lung adenocarcinomas, squamous cell carcinomas7,21, or
SCLC4–6. In light of these distinct associations, it remained to be
understood if these genomic correlates might reflect a relation-
ship of LCNECs with these lung tumor subtypes on the level of
gene expression. We therefore analyzed whether the transcrip-
tional patterns in LCNECs are correlated with the expression
profiles of other lung cancers.

We compared the expression data of LCNECs with lung
adenocarcinomas2,3,25–27, squamous cell carcinomas3, SCLC6 and
pulmonary carcinoids24 following extensive normalization of the
transcriptome sequencing data (Fig. 2a, Methods section,
Supplementary Data 11). Unsupervised consensus clustering
yielded five consistent expression clusters, which correlated with
the histological annotation of the tumors (P < 0.0001, Fig. 2a,
Supplementary Fig. 6–7, Supplementary Data 12): pulmonary
carcinoids, squamous cell carcinomas and adenocarcinomas
formed distinct transcriptional classes (classes A, B, and C,
respectively), with few LCNECs falling into these groups.

However, the majority of SCLC and LCNECs clustered in two
transcriptional subgroups (classes D and E) (Fig. 2a); a
phenomenon that had previously been observed in other studies
on high-grade neuroendocrine tumors6,18. While the majority of
SCLC tumors formed consensus cluster E (75% of all SCLC cases
analyzed), a fraction of SCLC tumors shared transcriptional
similarities with LCNECs that predominantly formed cluster D.
Thus, LCNECs appear to be more closely related to SCLCs than
to adenocarcinomas or squamous cell carcinomas.

We next analyzed the transcriptome sequencing data for
differentially expressed genes and their enrichment in biological
pathways (Methods section). In line with previous observa-
tions2,3,9–11,18,28, this analysis showed that both adenocarcinomas
and squamous cell carcinomas exhibited upregulation of path-
ways controlling cell differentiation, adhesion and immune
responses, along with higher expression of ERBB2 and TP63
(Fig. 2b, Supplementary Fig. 8a, Supplementary Data 13–14, Q <
0.05, Methods section). Lung neuroendocrine tumors, on the
contrary, showed significantly higher expression of neuroendo-
crine and endocrine markers, Hu antigens (ELAVL3 and
ELAVL4) and the lineage transcription factor and oncogene
ASCL1, which is in agreement with previous studies on lung
cancer subtypes11–13,18,29 (Q < 0.05, Methods section). Further-
more, particularly high expression of the neuronal and endocrine
lineage transcription factors NEUROD1, NEUROD4, and NEU-
ROG330,31 was found in SCLC and LCNECs of transcriptional
class E (Fig. 2a, c, Supplementary Fig. 8b–e, Supplementary
Data 13, Q < 0.05). While recent studies employing SCLC cell
lines and mouse models indicated discordant expression patterns
for ASCL1 and NEUROD131, our sequencing data of human high-
grade neuroendocrine lung tumors revealed expression of both
neuroendocrine lineage factors in class E (Supplementary Fig. 8f).

Within the spectrum of neuroendocrine lung tumors, pulmon-
ary carcinoids formed a distinct subgroup with functional
enrichment in pathways regulating cellular respiration and
metabolism. LCNECs mostly shared similarities with SCLC,
revealing upregulation of pathways and genes controlling cell
cycle and mitosis (E2F transcription factors and checkpoint
kinases), DNA damage response (RAD51, TOP2A, and BRCA1)
and centrosomal functions (such as BUB1, PLK1, and ASPM);
which, to some extent, were also found in squamous cell
carcinomas (Fig. 2b; Supplementary Fig. 8g–i, Supplementary
Data 13–14), and which is in agreement with previous studies18.
Further supporting a molecular relationship of SCLC and
LCNECs in a fraction of the cases, RB1-mutated LCNECs were
enriched in classes D and E (P < 0.05, Fisher’s exact test).
Although, LCNECs also harbored alterations commonly observed
in adenocarcinomas and squamous cell carcinomas, even
LCNECs with such alterations in KEAP1 or STK11 were primarily
found in transcriptional subclasses shared with SCLC (Fig. 2a,
Supplementary Fig. 7c, Supplementary Data 12). Therefore, this
observation supports the view that despite the similarity in
oncogenic mutations, LCNECs rather constitute their own
biological class; and may not be considered as neuroendocrine
versions of adenocarcinomas or squamous cell carcinomas.

We also quantified the consistency of the expression profiles
for each sample with respect to its clustering group. Again, this
analysis revealed a strong correlation for most LCNECs clustering
with SCLC tumors (classes D and E); on the other hand,
expression profiles of those few LCNEC samples clustering with
lung adenocarcinomas, squamous cell carcinomas, and pulmon-
ary carcinoids were less consistent (Fig. 2d). Furthermore, we
performed separate transcriptional clustering of LCNECs with
adenocarcinomas and squamous cell carcinomas only (excluding
SCLC), which did not suggest any unrecognized similarities
between these lung cancer subtypes (Supplementary Fig. 9). Thus,
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despite sharing somatic alterations with other tumor subtypes,
such as adenocarcinomas and squamous cell carcinomas,
LCNECs were transcriptionally dissimilar with all non-
neuroendocrine lung tumors and showed closest similarities to
SCLC.

The transcriptional relationship of LCNEC and SCLC. In the
previous section, we sought for a global approach to identify
common and distinct transcriptional profiles of LCNECs in
relationship with other lung tumors, which showed that LCNEC
and SCLC appear to share most transcriptional patterns.
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However, strongly divergent tumors (e.g., carcinoids, adeno-
carcinomas) may drive these clusters and mask important dif-
ferences between LCNECs and SCLC. We therefore sought to
directly compare LCNECs and SCLC on the transcriptional level
(Fig. 3a). The resulting unsupervised clustering analysis revealed
four consensus clusters of LCNEC and SCLC that we termed
classes I–IV in order to distinguish them from the above-
mentioned classes A–E (Fig. 3a, Supplementary Fig. 10–11,
Supplementary Data 12). Class I exclusively included LCNECs
with STK11 or KEAP1 alterations; yet, a few cases with these
alterations fell into class II that predominantly consisted of
LCNECs with RB1 loss (Fig. 3a). Some LCNECs, including
tumors admixed with SCLC (“SCLC combined LCNECs”)—
clustered with the majority of SCLC tumors in the classes III and
IV; similarly, some SCLC tumors were part of class II that
included LCNECs bearing RB1 alterations (Fig. 3a, Supplemen-
tary Fig. 11). Even though pathological review had been con-
ducted to distinguish histological subtypes from one another,
transcriptional clustering suggested high degrees of similarity for
some LCNEC and SCLC cases; these tumors may therefore be
considered as “SCLC-like” and “LCNEC-like” (Fig. 3a, Supple-
mentary Fig. 11, Supplementary Data 11). Other major genome
alterations (e.g., NKX2-1, MYCL1, RAS genes, NFE2L2, BRAF)
did not segregate with the identified transcriptional subgroups
(Supplementary Fig. 11). We further analyzed the consistency of
the transcriptional subgroups by clustering LCNECs alone, which
revealed high concordance with the transcriptional classes iden-
tified in Fig. 3a (62/66 cases, 94%, P < 0.001, Fisher’s exact test,
Supplementary Fig. 13, Supplementary Data 12). Thus, despite
the similarities between LCNECs and SCLCs, subtypes of
LCNECs exist with profound differences to SCLC.

The transcriptional clustering heatmap pointed to a strong
gene expression pattern shared by all LCNECs bearing STK11/
KEAP1 alterations (Fig. 3a, Supplementary Fig. 12a, green box in
upper left quadrant). We therefore conducted a supervised
analysis of the gene expression data, in which LCNECs with
STK11/KEAP1 alterations were compared to tumors bearing RB1
alterations. This analysis indicated specific expression profiles,
which were similar to those observed in tumors constituting class
I (Fig. 3b, Supplementary Fig. 12, Supplementary Data 13). We
therefore assigned this genomic subset of tumors to one group,
termed “type I LCNECs”.

Type I LCNECs exhibited high levels of calcitonin A (CALCA),
a known marker of pulmonary neuroendocrine cells32–34 (Fig. 3a,
Supplementary Fig. 12b, Supplementary Data 13). This subgroup
furthermore displayed a pronounced upregulation of cellular
metabolic pathways, which we also observed in pulmonary
carcinoids (Fig. 2b), but which was less prominent in LCNECs
and SCLC tumors with RB1 alterations (Fig. 3a, b, Supplementary
Data 12–13). Other genes found in type I LCNECs included
gastrointestinal transcription factors (e.g., HNF4A, HNF1A, and
RFX6), which were previously reported to play a role in
de-differentiated lung tumors35,36 (Fig. 3b, Supplementary
Fig. 12c, d, Supplementary Data 13).

The most striking difference was found in the expression levels
of neuroendocrine genes: while type I LCNECs and the majority
of SCLC tumors (class III+ IV) harbored high levels of
neuroendocrine genes (CHGA and SYP; Fig. 3c; Supplementary
Fig. 12e; Supplementary Data 12), most LCNECs and some SCLC
tumors with RB1 alterations in class II exhibited low levels of
these genes (Fig. 3c, Supplementary Fig. 12e). By contrast, tumors
in class II displayed elevated expression of genes associated with
active Notch signaling (e.g., NOTCH1, NOTCH2, and HES1) and
immune cell responses (e.g. PDCD1LG2, TLR4, and CTSB)
(Fig. 3a, d, Supplementary Fig. 12f, Supplementary Data 12–13).
Given the strong enrichment of LCNECs with STK11 or KEAP1
alterations in cluster I, and the prominent lack of expression of
key neuroendocrine genes in most tumors of class II, we termed
LCNECs within this transcriptional class as “type II LCNECs”.

We have recently demonstrated that SCLC tumors usually
harbor inactive Notch signaling and that activation of Notch
reduces expression of neuroendocrine genes (e.g., CHGA, SYP and
NCAM1) and Ascl16. Consistent with this notion, we found that
type II LCNECs and some SCLC within this transcriptional class
exhibited signs of NOTCH upregulation and low expression of
neuroendocrine markers, ASCL1 and DLL3, an inhibitor of the
Notch signaling pathway37 (Fig. 3d, and Supplementary Fig. 12f).
Conversely, type I LCNECs and the majority of the SCLC samples
(class III and IV) showed higher levels of neuroendocrine genes, as
well as of ASCL1 and DLL3, and downregulation of NOTCH
pathway genes (Fig. 3d, Supplementary Fig. 12f). Thus, despite the
fact that type II LCNECs and some SCLCs harbor bi-allelic loss of
TP53 and RB1, their transcriptional signatures include low levels of
neuroendocrine genes and a distinct profile of NOTCHhigh and
ASCL1low/DLL3low, which differentiates these tumors from type I
LCNECs and from the majority of SCLC cases. We did not identify
any significant enrichment of somatic alterations in NOTCH
pathway genes, which may explain these transcriptional differences
(Supplementary Fig. 11). However, a recent study in a pre-clinical
mouse model has established a central role of REST as a repressor
of neuroendocrine markers in SCLC38. Compatible with these
findings, type II LCNECs displayed significantly higher levels of
REST (clustering class II, Supplementary Data 12, Q < 0.05), which
may explain the low neuroendocrine phenotype in type II LCNECs
marked by ASCL1low/DLL3low/NOTCHhigh. Given the important
role of NOTCH signaling and ASCL1 in the decision of
neuroendocrine fate and the development of neuroendocrine lung
tumors29,31,38, these findings provide further support for our
distinction of type I and II LCNECs.

We next analyzed the relationship of the expression classes I–IV
using hierarchical clustering, which revealed two major subgroups
(Supplementary Fig. 11): one subgroup mainly consisting of
LCNECs (type I and II LCNECs), and the other subgroup mainly
containing SCLC tumors (classes III and IV). Thus, despite
harboring distinct transcriptional subcategories, LCNEC and SCLC
tumors largely followed their histological annotation and formed
separate transcriptional subgroups. Differentially expressed genes
included SOX1 and the neuroendocrine Hu genes (ELAVL3,

Fig. 3 Gene expression studies on LCNEC and SCLC. a The expression profiles of LCNEC and SCLC tumors were analyzed following the annotation and
approach described in Fig. 2a. Expression values of genes identified by ClaNC (Methods section) are represented as a heatmap in which red and blue
indicate high and low expression, respectively. Selected candidate genes are shown on the right. Dashed green lines indicate an expression profile shared
by LCNEC tumors with STK11/KEAP1 alterations (type I LCNECs). b The significant enrichment of differentially expressed genes and signaling pathways are
displayed for type I LCNECs and type II LCNECs. P < 0.0001 (Methods section); * some SCLC tumors that co-clustered with type II LCNECs were included
in this analysis. Key candidate genes are highlighted in bold. c, d Expression values for c the key neuroendocrine differentiation markers SYP
(synaptophysin) and CHGA (chromogranin A) (scatter plot), and d NOTCH pathways genes (box plots: median and interquartile range, whiskers: min–max
values). e Significant enrichment of differentially expressed genes and signaling pathways was analyzed for class I and II vs class III and IV tumor samples;
P < 0.0001 (Methods section). f Expression values of SOX1, ELAVL3, and ELAVL4 are plotted for the clustering classes and other lung cancer subtypes (box
plots: median and interquartile range, whiskers: min–max values). Q < 0.05 (#), SAM (Supplementary Dataset 12); P < 0.01 (**) Mann–Whitney U-test
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ELAVL4), which were enriched in most SCLC samples (classes III
and IV (Supplementary Data 13, Q < 0.05, Methods section)
(Fig. 3f). This observation is in line with previous reports on auto-
antibodies against Sox1 and Hu-proteins that are commonly found
in SCLC patients39. While pulmonary carcinoids harbored similar
expression levels, these genes were essentially absent or only
moderately expressed in most LCNECs and other lung cancer
subtypes (Fig. 3f).

We furthermore analyzed the impact of transcriptional
subgroups on tumor stage and clinical outcome. While, we found
no association of tumor stage with the molecular subsets found in
high-grade neuroendocrine tumors (Supplementary Data 12), we
observed a trend toward inferior survival in patients with SCLC
(transcriptional profiles of classes III and IV; P= 0.072, log-rank
test, Supplementary Fig. 14), which was similarly observed in
previous studies on high-grade neuroendocrine lung tumors18.

Conclusively, LCNECs exhibit a distinct expression profile
within the spectrum of high-grade neuroendocrine lung tumors,
which can further be divided into two subtypes: type I LCNECs
with high neuroendocrine expression and, similar to SCLC, a
profile of ASCL1high/DLL3high/NOTCHlow, and type II LCNECs
with reduced expression of neuroendocrine genes and a pattern of
ASCL1low/DLL3low/NOTCHhigh (Fig. 4).

Discussion
Here we provide the first comprehensive molecular analysis of
LCNECs, which allowed distinguishing between two genomic
subgroups with specific transcriptional patterns, defined as “type I
LCNECs” and “type II LCNECs” (Fig. 4).

Type I and II LCNECs harbor key genomic alterations and
oncogenic mutations, which are commonly found in SCLC, lung
adenocarcinoma or squamous cell carcinoma (e.g., in RAS genes,
BRAF, NFE2L2, as well as in STK11 and KEAP1 in the case of
type I LCNECS, and RB1 losses in the case of type II LCNECs).
One possible explanation for this observation might be a high
level of intra-tumor heterogeneity, combined with occurrence of
two tumor types in a single tumor. However, the key alterations
that we found in LCNECs were mostly clonal, with limited
genomic intra-tumor heterogeneity. Furthermore, thorough
comparisons of gene expression profiles did not suggest simila-
rities between LCNECs and lung adenocarcinomas or squamous

cell carcinomas. Thus, the combinations of distinct sets of
mutations with specific patterns of gene expression supports the
view that LCNECs are not a variant of the other types of lung
cancer, but represent a distinct subgroup within the spectrum of
neuroendocrine lung tumors.

In a more focused comparison with the most frequent neu-
roendocrine type of lung cancer, SCLC, type I LCNECs with
STK11 and KEAP1 alterations exhibited a high degree of simi-
larity with these carcinomas, as well as high expression of neu-
roendocrine genes and a profile of ASCL1high/DLL3high/
NOTCHlow. By contrast, type II LCNECs with RB1 alterations
revealed reduced expression of neuroendocrine genes and a pat-
tern of ASCL1low/DLL3low/NOTCHhigh. Notch family members
play a multifaceted role in the development of neuroendocrine
tumors with cell-type specific tumor suppressor and oncogenic
functions40. We have shown in earlier studies that NOTCH serves
as a tumor suppressor in SCLC6, which mostly harbor high-level
expression of the negative regulator of Notch, DLL36,37,41 (Fig. 4).
A recent clinical trial with an antibody-drug conjugate targeting
the non-canonical inhibitory NOTCH ligand, Dll3, has shown
early signs of clinical activity in SCLC37,41. We now demonstrate
shared neuroendocrine pathways between SCLC and type I
LCNECs, which may be similarly susceptible to this agent. On the
other hand, type II LCNECs with alterations in RB1 exhibited
active Notch signaling (Fig. 4). Clinical trials have assessed the
efficacy of an antibody targeting Notch 2 and 3 in SCLC, but
recently failed in demonstrating a clinical benefit42,43. Therefore,
future clinical trials involving therapeutics, targeting activating or
inhibitory members of the Notch pathway will—in our view—
require clear assignment of the respective molecular subtype.

Perhaps another noteworthy finding, type II LCNECs exhibited
a pattern of gene expression with upregulation of immune related
pathways (Fig. 3b, Fig. 4), which has similarly been observed in
various other tumor types28 and which may impact the response
of patients to immunotherapy. Taken together, the precise dis-
tinction of high-grade neuroendocrine tumors representing as
type I LCNECs and as RB1-mutated SCLC or type II LCNECs,
may be pivotal to assess the efficacy of targeted therapeutics,
including Notch pathway and immune checkpoint inhibitors.

Our sequencing studies did not reveal any somatic events that
may cause the transcriptional discrepancy observed in LCNEC and
SCLC tumors with TP53 and RB1 alteration, which raises the
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question if all neuroendocrine tumors share the same cell of origin.
It remains to be understood whether distinct tumor-specific cell of
origins or cellular processes allow for plasticity and trans-
differentiation that consequently lead to distinct molecular phe-
notypes. Importantly, histological trans-differentiation from lung
adenocarcinoma to SCLC has been observed, both spontaneously
or as resistance mechanisms to kinase inhibitors44,45; in some cases
these were linked with a loss of RB14,46. Previous studies involving
genetically engineered mouse models and human cell lines have
emphasized the phenomenon of transcriptional heterogeneity in
SCLC and pointed to discordant expression of key lineage factors
(e.g. ASCL1, NEUROD1, REST)31,38. By contrast, human primary
tumors revealed a more complex expression pattern with co-
expression of these transcriptional regulators. As a limitation of
bulk tumor sequencing, advances in single cell sequencing may
further aid to resolve and study the level of transcriptional intra-
tumor heterogeneity in high-grade neuroendocrine tumors. While
our studies pointed to transcriptional correlates of genomically
defined subsets in LCNECs (type I and type II LNCECs), additional
analyses on a larger dataset are warranted to further interrogate
subcategories of high-grade neuroendocrine tumors.

In summary, we provide the first comprehensive character-
ization of neuroendocrine lung tumors, which integrates the
molecular phenotypes of less frequent lung tumor subtypes.
Despite the fact that LCNEC and SCLC tumors share some
common clinical and histological characteristics, our study
emphasizes pronounced differences in the pattern of genomic
alterations and in their transcriptome profiles. The precise dis-
tinction of type I and type II LCNECs from SCLC is consequently
pivotal to evaluate the response of patients to treatment options
and to further understand morphological trans-differentiation
processes in lung cancer patients.

Methods
Human specimens. The institutional review board (IRB) of the University of
Cologne approved this study. Patient samples were obtained under IRB-approved
protocols following written informed consent from all human participants. We
collected and analyzed fresh-frozen samples of 75 LCNEC patients, which were
provided by multiple collaborating institutions; 42 tumors were previously subject
of other studies conducted by Rousseaux et al.47 (n= 25) and Seidel et al.7 (n= 37)
(Supplementary Data 1). Clinical data were available for most patients, who were
predominantly male (approximate ratio of 4:1) and current or former heavy
smokers (Supplementary Data 1). All tumor samples were reviewed and confirmed
by independent expert pathologists (E.B., W.T., and R.B.), and the diagnosis of
LCNEC and the assessment of combined histological components were confirmed
by H&E staining and immunohistochemistry, including markers for chromogranin
A, synaptophysin, CD56 and Ki67. All tumors were positive for at least one
neuroendocrine differentiation marker (Supplementary Data 1–2). Specimens
containing >70% of tumor cells were processed for DNA and RNA extractions.
DNA was extracted from matching normal material that was provided in the form
of blood or adjacent non-tumorigenic lung tissue, which through pathological
evaluation was confirmed to be free of tumor contaminants.

Nucleic acid extraction. Total DNA and RNA were obtained from fresh-frozen
tumor tissue and matched fresh-frozen normal tissue or blood. Depending on the
size of the tissue, 15–30 sections, each 20 μm thick, were cut using a cryostat (Leica)
at –20 °C. The matched normal sample obtained from frozen tissue was processed
the same way. Nineteen LCNEC cases were identified with mixed histological
components of SCLC, lung adenocarcinomas and squamous cell carcinomas
(Supplementary Data 1); in these cases nucleic acids were extracted from
pure LCNEC regions by only dissecting the LCNEC component. DNA was
extracted with the Gentra Puregene DNA extraction kit (Qiagen) and diluted to a
working concentration of 100 ng/μL. The DNA was analyzed by agarose gel elec-
trophoresis and confirmed to be of high-molecular weight (>10 kb). The DNA of
tumor and normal material was confirmed to originate from the same patient by
short tandem repeat (STR) analysis which was conducted at the Institute of Legal
Medicine at the University of Cologne (Cologne, Germany), or by subsequent
Affymetrix 6.0 SNP array and sequencing analyses.

RNA was isolated from tumor tissues by first lysing and homogenizing tissue
sections with the Tissue Lyzer (Qiagen). The RNA was then extracted with the
Qiagen RNAeasy Mini Kit. The RNA quality was analyzed at the Bioanalyzer 2100

DNA Chip 7500 (Agilent Technologies) and cases with a RNA integrity number
(RIN) of over seven were considered for RNA-seq experiments.

Next-generation sequencing (NGS). WES was performed by first fragmenting 1 μg
of DNA (Bioruptor, diagenode, Liége, Belgium). The DNA fragments were then end-
repaired and adaptor-ligated with sample index barcodes. Following size selection, the
SeqCap EZ Human Exome Library version 2.0 kit (Roche NimbleGen, Madison, WI,
USA) was used to enrich for the whole exome. The DNA libraries were then
sequenced with a paired-end 2 × 100 bp protocol aiming for an average coverage of
90× and 120× for the normal and tumor DNA, respectively. The primary data were
filtered for signal purity with the Illumina Realtime Analysis software.

WGS was performed with a read length of 2 × 100 bp. The samples were
processed to provide 110 Gb of sequence, thus amounting to a mean coverage of
30× for both tumor and matched normal.

For RNA-seq, cDNA libraries were prepared from PolyA+ RNA following the
Illumina TruSeq protocol for mRNA (Illumina, San Diego, CA, USA). The libraries
were sequenced with a paired-end 2 × 100 bp protocol resulting in 8.5 Gb per
sample, and thus in a 30× mean coverage of the annotated transcriptome.

Whole genome, whole exome and transcriptome sequencing reactions were
performed on an Illumina HiSeq 2000 sequencing instrument (Illumina, San
Diego, CA, USA).

Copy-number analysis by Affymetrix SNP 6.0 arrays. Human DNA from fresh-
frozen tumors was analyzed with Affymetrix Genome-Wide Human SNP 6.0
arrays to determine copy-number alterations. Raw copy number data were com-
puted by dividing tumor-derived signals by the mean signal intensities obtained
from a subset of normal samples which were hybridized to the array in the same
batch. Circular binary segmentation was applied to obtain segmented raw copy
numbers48. Significant copy-number alterations were assessed with CGARS49 at a
threshold of Q < 0.01 (Supplementary Data 4).

Data processing and analyses of DNA sequencing data. The sequencing reads
were aligned to the human reference genome NCBI build 37 (NCBI37/hg19) with
BWA (version 0.6.1-r104)50. Possible PCR-duplicates were masked and not included
for subsequent studies. We applied our in-house analysis pipeline4,6,51 to analyze the
data for somatic mutations, copy number alterations and genomic rearrangements. In
brief, the mutation calling algorithm considers local sequencing depth, forward-
reverse bias, and global sequencing error, to thus determine the presence of a mutated
allele. We determined the somatic status of these mutations by assessing the absence
of these variants in the sequencing data of the matched normal.

We determined genomic rearrangements from WGS data of 11 human
LCNECs following the procedure as previously described6,51. In brief, the
sequencing data were analyzed for discordant read-pairs, which were not within
the expected mapping distance (>600 base pairs) or which revealed an incorrect
orientation. Discordant read-pairs were analyzed for breakpoint-spanning reads, in
which one read-pair shows partial alignments to two distinct genomic loci.
Rearranged genomic loci were then reported at instances where at least one
breakpoint-spanning read was identified. The genomic rearrangements called from
each tumor sample were further filtered against the sequencing data of a matched
normal and additionally against a library of normal genomes to thus minimize the
detection of false-positive rearrangements.

Significantly mutated genes were analyzed as previously described4,6. In brief,
we first determined the overall background mutation rate of each gene by
computing its expected number of mutations assuming that all mutations are
uniformly distributed across the genome. We also considered the ratio of
synonymous to non-synonymous mutations into a combined statistical model to
determine significantly mutated genes. Since mutation rates in non-expressed genes
are often higher than the genome-wide background rate, we furthermore filtered
for the expression of genes by referring to the transcriptome sequencing data of
LCNECs. Only genes with a median FPKM (Fragments Per Kilobase Million) value
of >1 in at least 35 out of 60 samples were considered (Methods section: RNA
sequencing data processing and analyses). The significance of recurrently mutated
genes was determined at a Q-value of <0.01 (Supplementary Data 7). Following
previously described methods, we furthermore analyzed the data for significant
enrichment of damaging mutations (including splice site, non-sense, and
frameshift mutations)6 and for significant clustering of mutations in genomic
hotspots following a re-sampling based approach4. Significance was determined at
a Q-value of 0.01, if the gene was affected in >10% of the samples (Supplementary
Data 7). The damaging impact of mutations was further assessed by Polyphen52.

The clonal status of mutations was assessed by computing for every mutation
the “cancer cell fraction” (CCF), which defines within a tumor the fraction of
cancer cells harboring that particular mutation53. The CCF was computed
following our previously described approach6. In brief, this method first estimates
tumor purity, ploidy, and absolute copy numbers, and computes for each mutation
in a given sample the expected allele frequency under the assumption of clonality.
The CCF is the quotient of the observed allelic fraction and the expected allelic
fraction of a mutation. The distribution of CCFs for every mutation in a sample
allowed to further identify distinct clusters and to thus assign the mutations to
clonal and subclonal populations. The analysis described in Supplementary Fig. 2c
considers mutations, which were assigned to clonal and subclonal fractions with a
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probability >90%. In consideration of the sequencing coverage and the overall
distribution of CCFs of every mutation in a sample, we furthermore determined the
significant enrichment of mutations in a subclone at a P-value of 0.01 (Fig. 1b).

Mutational signatures analyses. Mutational signatures were analyzed in lung
cancer subtypes applying previously described methods54,55 and referring to the
datasets of 77 lung adenocarcinomas (50 heavy-smokers (hs) and 27 non-smokers
(ns) from the TCGA project)2,25, 52 lung squamous cell carcinomas (from the
TCGA project)3, 109 SCLC6, and 60 LCNECs from this study. Tumor cases with at
least 30 somatic variants were selected and the list of variants were either extracted
from Supplementary Materials6 or COSMIC v68 (for the TCGA data)20. Variants
were annotated with Annovar (version 12 Nov 2014). Gene strand orientations
were retrieved from the RefSeqGene database using a customized Perl script.
Variants were included in the analyses only if they could be successfully annotated.
Single-base substitutions were classified into 96 types determined by the six pos-
sible substitutions (C:G > A:T, C:G > G:C, C:G > T:A, A:T > C:G, A:T > G:C, A:T >
T:A) in their tri-nucleotides sequence context (16 combinations for each type of
substitution). For extracting mutational signatures, we used the non-negative
matrix factorization (NMF) algorithm developed by Lee et al.56 and implemented
in the Welcome Trust Sanger Institute (WTSI) mutational signatures framework.

Di-deoxynucleotide sequencing. Somatic alterations of interest were determined
and confirmed by two independent sequencing approaches, which included WGS,
WES, RNA-seq or di-deoxynucleotide sequencing. Di-deoxynucleotide chain ter-
mination sequencing (Sanger sequencing) was performed to validate mutations,
genomic rearrangements, and chimeric fusion transcripts. Primer pairs were
designed to amplify the target region encompassing the somatic alteration. The
PCR reactions were performed either with genomic DNA or cDNA. The amplified
products were subjected to Sanger sequencing and the respective electro-
pherograms were analyzed by visual inspection using 4 Peaks or Geneious.

Analysis of RNA sequencing data. In order to detect chimeric transcripts, RNA-
seq data were processed using TRUP4,27. In brief, paired-end RNA-seq reads were
aligned to the human reference genome (NCBI37/hg19). We used TRUP to
identify potential chimeric transcripts. Gene expression levels were determined
with Cufflinks v2.0.2 referring only to paired-end reads that uniquely mapped
within the expected mapping distance. The expression was quantified as FPKM
(Fragments Per Kilobase Million) and the expression values served as a filter for
identifying significantly mutated genes (Methods section: Data processing and
analyses of DNA sequencing data).

Gene expression profiling and clustering studies. We analyzed transcriptome
sequencing data from a total of n= 341 lung cancer samples. N= 221 samples
referred to the data generated at the University of Cologne, Department of
Translational Genomics, which included 41 lung adenocarcinoma26,27, 61 pul-
monary carcinoids24, 53 SCLC6, and 66 LCNECs from this present study. N=
120 samples were randomly selected from both the TCGA lung squamous cell
carcinoma (n= 60)3 and TCGA lung adenocarcinoma (n= 60) cohorts2,25 refer-
ring to the Genomics Data Commons Legacy Archive. Sequencing data of lung
adenocarcinomas from two different platforms aided in controlling for potential
batch effects in subsequent studies. The raw sequencing reads of the RNA-seq data
were all similarly processed to analyze for gene expression profiles. Sequencing
reads which passed the quality control were mapped to the human reference
genome (hg19) using MapSplice57. Picard Tools v1.64 (http://broadinstitute.github.
io/picard/) was used to assess the alignment profile. SAMtools was used to sort and
index the mapped reads and to determine transcriptome coordinates. The aligned
reads were further filtered for indels, large inserts, and zero mapping quality with
UBU v1.0 (https://github.com/mozack/ubu). RSEM58, an expectation-
maximization algorithm that refers to UCSC gene transcript and definitions, was
applied to estimate transcript abundance. In order to allow comparisons between
all RNA-Seq samples, raw RSEM read counts were normalized to the overall upper
quartile59. The expression was quantified for 20,500 genes in 341 tumor samples
and the median expression value was determined at RSEM= 209, which served as
a reference threshold to classify for low and high expression. The expression
determined by RSEM is provided for LCNECs in Supplementary Data 11.

For clustering purposes a set of genes that were both highly expressed and had
highly variable expression patterns was identified in all lung cancer subtypes.
Quality control procedures performed prior to any clustering analysis did not
detect any evidence of batch effects.

After median centering the log2(RSEM+ 1) values by gene, unsupervised
consensus clustering was applied using the ConsensusClusterPlus R package60,61

with partitioning around medioids and a Spearman correlation-based distance.
Additional hierarchical clustering of the consensus clustering classes was
performed, applying average linkage and a Pearson correlation-based distance.

The statistical significance of the differences in gene expression patterns present
in the subtype was assessed with the SigClust R package62 by referring to the
clustering gene sets and by using 1000 permutations and the default covariance
estimation method. ClaNC63 was used to identify genes whose expression patterns

characterize the subtypes. R 3.0.261 was used to perform all statistical analyses and
create all figures.

We first conducted consensus clustering of all lung cancer subtypes. The
expression data of all lung cancer subtypes (n= 341) was analyzed and the 0.75
quantile of all log2(mean(RSEM)) values was used to identify highly expressed
genes, while the 0.9 quantile of log2(variance(RSEM)) was used as a threshold to
identify clustering gene sets that have highly variable expression patterns, which
yielded a set of 1854 genes (Supplementary Fig. 6a). The samples were clustered
with ConsensusClusterPlus following partition around medoids (PAM), and the
ConsensusClusterPlus output along with gene expression heatmaps, principal
components analysis, and silhouette plots was analyzed. Manual review of
ConsensusClusterPlus output suggested a possible clustering solution based on k=
6 groups. However, two of the six groups included mainly lung adenocarcinoma
samples and the gene expression heatmaps and PCA plots showed that these
groups were quite similar. Thus, we chose to collapse these groups, thereby
producing a five-class solution. The consensus clusters highly correlated with the
histological subtypes as determined by Fisher’s exact test Monte Carlo version (P <
0.001, 10,000 permutations): class A (n= 66; enriched for pulmonary carcinoids),
class B (n= 65, enriched for lung squamous cell carcinomas), class C (n= 108,
enriched for lung adenocarcinomas; data generated by different institutes), class D
(n= 38, enriched for LCNEC and SCLC cases), and class E (n= 64, enriched for
SCLC and LCNEC cases) (Supplementary Fig. 6b, Supplementary Data 12). ClaNC
led to the identification of 875 classifier genes, which are displayed in the
expression heatmaps (Fig. 2, Supplementary Fig. 6–7, Supplementary Data 13).

We then conducted consensus clustering of LCNECs, SCLC, lung
adenocarcinomas, and squamous cell carcinomas. The unsupervised clustering
approach was repeated for a subset of lung cancer subtypes; here excluding
pulmonary carcinoids. The feature selection of highly variable (0.75 quantile) and
highly expressed (0.9 quantile) genes across these lung tumor subtypes (n= 280)
involved a gene set of 1855 genes and the consensus clustering process through
hierarchical clustering suggested the presence of three expression clusters
(expression subtypes): class A (n= 98, enriched for lung adenocarcinomas), class B
(n= 115, enriched for LCNEC and SCLC), and class C (n= 67, enriched for lung
squamous cell carcinomas). ClaNC identified 300 classifier genes which are
displayed in the respective expression heatmaps (Supplementary Fig. 9).

We performed consensus clustering of LCNEC and SCLC through
unsupervised clustering of the expression data of LCNEC and SCLC tumors alone
(n= 119). Exploratory analyses of the gene expression data suggested the use of the
0.9 quantile of both the log2(mean(RSEM)) and log2(variance(RSEM)) values as
thresholds for highly expressed and highly variably expressed genes. This produced
a set of 1416 clustering genes. The Consensus clustering approach included
hierarchical clustering and yielded four gene expression subtypes: class I (n= 19,
only LCNECs), class II (n= 49, LCNEC and some SCLC tumors), class III (n= 10,
SCLC and some LCNECs), and class IV (n= 41, mainly SCLC and some LCNECs)
(Fig. 3, Supplementary Fig. 10–11, Supplementary Data 12). Hierarchical clustering
of these cases revealed two main subgroups: one mainly formed by class I and II
(enriched for LCNECs) and one mainly formed by class III and IV (enriched for
SCLC) (Supplementary Fig. 11). 300 classifier genes were identified by ClaNC and
are displayed in the expression heatmaps (Fig. 3, Supplementary Fig. 11,
Supplementary Data 13).

We also performed consensus clustering of LCNECs with lung
adenocarcinomas or lung squamous cell carcinomas. A gene set of (a) 1335 and (b)
1338 highly variable (0.85 quantile) and expressed genes (0.925 quantile) was
identified in subsets of lung cancer tumors, including (a) LCNECs and lung
adenocarcinomas (n= 167) and (b) LCNECs and lung squamous cell carcinomas
(n= 126). The consensus clustering approach through PAM (partitioning around
medoids) suggested in both cases two transcriptional subclasses: for approach (a)
class A (n= 70, mainly LCNECs) and class B (n= 97, mainly lung
adenocarcinomas); and for approach (b) class A (n= 58, mainly LCNECs) and
class B (n= 68, mainly lung squamous cell carcinomas). ClaNC identified 100
classifier genes in each approach, which were used for the expression heatmaps
(Supplementary Fig. 9).

We furthermore performed consensus clustering of LCNECs alone. The
transcriptional data on LCNECs was analyzed and hierarchical clustering referred
to 475 very highly expressed (0.875 quantile) and very highly variable (0.975
quantile) genes. The consensus clustering approach yielded a k= 4 clustering
solution: class 1 (n= 11), class 2 (n= 21), class 3 (n= 24), and class 4 (n= 10).
ClaNC was then applied to the clustering solution, which further identified 540
classifier genes (Supplementary Fig. 13, Supplementary Data 13).

Differential expression analysis. The SAMR R package64 was used to identify
genes that were differentially expressed in the expression subtypes using 1000
permutations and a Q-value threshold of 0.05 (Supplementary Data 13). We then
used the DAVID annotation database65,66 to identify pathways that were enriched
for differentially expressed genes at P < 0.0001 (Supplementary Data 14).

Immunohistochemistry. FFPE tissue sections of 3-μm thickness were stained for
hematoxylin and eosin (H&E) and immunohistochemistry (IHC) was conducted
for CD56 (NCAM1), Synaptophysin (SYP), Chromogranin A (CHGA, clone DAK-
A3), TTF-1 (NKX2-1, clone 8G7G3/1), and Rb1 (RB1, clone 1F8 (ab81701; Abcam,
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Cambridge, UK) (Supplementary Data 2, Supplementary Table 1). Hematoxylin
and eosin (H&E) were scanned and can be viewed online or with the Pannoramic
Viewer software (3D Histech) as specified in Supplementary Data 2 (for further
information see “Data Availability”).

Specifically, IHC for Rb1 was performed with the Novolink max polymer
detection system (RE7280-CE, Leica Biosystems, Wetzlar, Germany) using EDTA
buffer pH 8.0 (K038, Diagnostic BioSystems, Pleasanton, USA) antigen retrieval
(4 × 5 min by microwave 700W). The primary antibody was incubated overnight at
4 °C; the secondary antibody was incubated for 30 min at room temperature. The
signal was visualized by diaminobenzidine after incubation for 5 min at room
temperature. Sections were counter-stained with hematoxylin for 5 min. The H-
score method was used for evaluating the immunostaining with Rb1 by multiplying
the intensity of the staining (0: no staining, 1: weak, 2: moderate and 3: strong
staining) with the percentage of the tumor or stroma stained. The minimum score
was 0 and the maximum was 300 (Supplementary Data 2).

Fluorescence in situ hybridization assay. Genomic rearrangements of PTK6 on
chromosome 20 were assessed through a dual-color break-apart fluorescence
in situ hybridization (FISH) assay following previous protocols67. In brief, the BAC
clone RP11-939M14 labeled centromeres with biotin (red signal) and CTD-
3228E10 labeled telomeric sites with digoxigenin (green signal). The samples were
analyzed with a 63× oil immersion objective at a fluorescence microscope (Zeiss,
Jena, Germany) equipped with appropriate filters, a charge-coupled device camera
and the FISH imaging and capturing software Metafer 4 (Metasystems, Altlus-
sheim, Germany). Two independent scientists analyzed the experiment (R.M. and
S.P.). Translocations were derived from a split of a signal pair, resulting in a single
red and green signal, single red or green signals resulting from signal loss, were
referred to as a rearrangement through deletion. In cases where cells were wild type
and displayed no rearrangements, a juxtaposed red and green signal (mostly
forming a yellow signal) was observed.

NTRK1 break-apart FISH were performed with the ZytoLight SPEC NTRK1
Dual Color Break Apart Probe (ZytoVision, Bremerhaven, Germany). According to
previous protocols68, 4 μm sections of FFPE tissue were treated with the Paraffin
pretreatment reagent kit (Vysis, Abbott Molecular), and then stained with the
probes following the instructions of the manufacturer. An NTRK1 rearrangement
was diagnosed when >15% of the nuclei showed either a split pattern with 3′ and 5′
signals separated by a distance superior to the diameter of the largest signal, or
isolated 3′ (orange) signals.

Data availability. Sequencing data and Affymetrix 6.0 SNP array data are
deposited at the European Genome-phenome Archive, which is hosted by the EBI
(EGA, http://www.ebi.ac.uk/ega/), under accession number EGAS00001000708.
Histological images of FFPE samples from LCNECs of this study are deposited as
H&E images (domain 1: https://teleslide.chu-grenoble.fr/ > acces
libre > recherche > recherche/TP/LCNEC-study > code access 1793) or as data files
compatible with the Pannoramic Viewer software (3D Histech) (domain 2: https://
uni-koeln.sciebo.de/index.php/s/xMjs4dqJpqbOVDn); an overview is provided in
Supplementary Data 2.
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Genome and Epigenome

Integrative Genomic Characterization Identifies
Molecular Subtypes of Lung Carcinoids
SaurabhV. Laddha1, EdaiseM. da Silva2, Kenneth Robzyk2, Brian R.Untch3, HuaKe1,
Natasha Rekhtman2, John T. Poirier4,William D. Travis2, Laura H. Tang2, and
Chang S. Chan1,5

Abstract

Lung carcinoids (LC) are rare and slow growing primary
lung neuroendocrine tumors. We performed targeted exome
sequencing, mRNA sequencing, and DNA methylation array
analysis on macro-dissected LCs. Recurrent mutations were
enriched for genes involved in covalent histone modification/
chromatin remodeling (34.5%;MEN1, ARID1A, KMT2C, and
KMT2A) as well as DNA repair (17.2%) pathways. Unsuper-
vised clustering and principle component analysis on gene
expression andDNAmethylation profiles showed three robust
molecular subtypes (LC1, LC2, LC3) with distinct clinical
features. MEN1 gene mutations were found to be exclusively
enriched in the LC2 subtype. LC1 and LC3 subtypes were

predominately found at peripheral and endobronchial lung,
respectively. The LC3 subtype was diagnosed at a younger age
than LC1 and LC2 subtypes. IHC staining of two biomarkers,
ASCL1 and S100, sufficiently stratified the three subtypes.
This molecular classification of LCs into three subtypes may
facilitate understanding of their molecular mechanisms and
improve diagnosis and clinical management.

Significance: Integrative genomic analysis of lung carcinoids
identifies three novel molecular subtypes with distinct clinical
features and provides insight into their distinctive molecular
signatures of tumorigenesis, diagnosis, and prognosis.

Introduction
Lung carcinoids (LC) are an indolent and rare type of primary

lung neoplasms that are, in general, understudied. The 2015
World Health Organization (WHO; ref. 1) classification of LCs
includes atypical carcinoids (AC; �0.2% prevalence) and typical
carcinoids (TC; �2% prevalence). TCs are slow growing tumors
that rarely spreadbeyond the lungswhereasACs are faster growing
tumors and have a greater chance of metastasizing to other
tissues (2). TheWHO classification relies mainly onmorphology,
proliferation rate (mitotic index), and necrosis assessment (3).
This current method of classification has its drawbacks as studies
have shown that the reproducibility of cancer classification and its
prognostic efficacy have high interobserver variability (3, 4),
especially for differentiating betweenTCandAC (5). RecentWHO
classifications highlight use of the Ki67 cell proliferation marker
todistinguishACs fromTCs (1).However, overlappingdistribution

of Ki67 betweenACs and TCs does not enable reliable stratification
betweenwell-differentiatedLCs (6, 7). It hasalsobeen reported that
TCs and ACs are overdiagnosed as small cell lung carcinomas
(SCLC) in small crush biopsy specimens (8), a situation where
artifacts in specimens appear as bluish clusters in which cellular
details are not recognizable. As SCLCs are highly malignant, incor-
rect diagnosis of TC and AC tumors as SCLC can subject patients to
unnecessary stress and treatment (8). More accurate molecular
diagnostic tools and stratification for LCs will help ensure more
appropriate treatment and clinical management.

Previous genomic analysis of LC tumors has identified recur-
rent mutations in MEN1, PSIP1, and ARID1A (9), whereas no
significant mutations or focal copy alterations were observed in
genes that are frequently mutated in non–small cell lung cancer
(NSCLC), large cell neuroendocrine carcinoma (LCNEC), and
SCLC (e.g., KRAS, TP53, EGFR, and RB1; ref. 10). The different
mutation spectrum and lowmutation burden (9) of LCs indicate
they are distinct from NSCLC and high-grade lung neuroendo-
crine tumors (NET). It is not known if there are distinct molecular
subtypes of LCs or their cells of origin.

In this study, we performed genotyping on 29 LCs to detect
mutations in a 354-cancer gene panel, mRNA sequencing (n¼ 30)
and DNAmethylation 450K-array analysis (n¼ 18) and identified
3 molecular subtypes with distinct clinical features. We also iden-
tified2 keybiomarkers (ASCL1 and S100) to stratify these subtypes.
Integration of genetic and epigenetic signatures distinguishes each
subtype of carcinoid, providing deeper insight into their distinctive
molecular signatures of tumorigenesis as well as cells of origin.

Materials and Methods
Patient's data

Retrospective and prospective reviews of 30 LC neoplasms were
performed using the pathology files and institutional database at
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Memorial Sloan Kettering Cancer Center (MSKCC, New York, NY).
All studies were conducted in accordance with appropriate ethical
guidelines (following U.S. Common Rule) and with Institutional
Review Board approval. Written informed consent was obtained
from the patients. All patients were evaluated clinically with con-
firmed pathologic diagnoses, appropriate radiological and labora-
tory studies, and surgical or oncological management. Fresh-frozen
tumor and paired normal tissues were obtained from MSKCC's
tissue bank under Institutional Review Board protocol. Targeted
cancer gene panel DNA sequencing, RNA sequencing (RNA-seq),
and DNA methylation array were performed on fresh-frozen sam-
ples. Relevant clinical and pathologic information is presented in
Supplementary File S1.

DNA sequencing and analysis
DNA extraction frommicrodissected tumor samples and normal

adjacent tissueswas performedusing a commercially availableDNA
Extraction Kit (DNeasy Blood and Tissue Kit, Catalog No. 69504;
Qiagen), according to the manufacturer's protocol. Targeted seq-
uencing on 29 LCs was performed using MSK-IMPACT (11) hybrid
capture cancer gene panel (n¼ 354). Single-nucleotide variants and
short indels (<30 bp) were identified and annotated using MSK-
IMPACT pipeline (11). Briefly, raw reads were filtered based on
quality, mapped to NCBI b37 genome using BWA–MEM version
0.7.5a (http://arxiv.org/abs/1303.3997), post-processed using
GATK (12), and variant identification using MuTect (13). Variants
were filtered based on its entry in NCBI-dbSNPs (http://www.ncbi.
nlm.nih.gov/snp), 1000Gproject (http://www.1000genomes.org/),
and COSMIC (http://cancer.sanger.ac.uk/cosmic). Filtered variants
were manually reviewed on IGV. We created the mutational Onco-
Print plot for our 29 LCs dataset using the online cBioPortal website
(http://www.cbioportal.org/oncoprinter.jsp).

RNA-seq and data analysis
TotalRNAextraction frommicrodissected frozen tumor samples

was performed using RNeasy Mini Kit (Catalog No. 74106) fol-
lowed by IlluminaHiSeq sequencing (2� 100 bp).We performed
RNA-seq data analysis as describedpreviously (14, 15). Briefly, raw
fastq files were examined for sequencing quality control using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc). Sequencing reads were mapped to human transcripts
corresponding to hg19 Genepattern (16) GTF annotations using
RSEM (17)with default parameters. STAR (18) aligner was used to
map reads in RSEM algorithm followedby calculating gene expres-
sion from mapped BAM files. Gene transcripts mapped data were
normalized to transcript per million (TPM). We used log2
(TPMþ1) values for all downstream analysis. For unsupervised
clustering, we used Pearson distance metric and hclust (ward.D2)
method(unless statedotherwise). PCAwasdoneusingprcomp inR.
R (http://www.r-project.org/) was used for all analysis and visu-
alization of data. The R package DeSeq2 (19) was used to identify
differentially expressed genes using Benjamini and Hochberg
corrected P value (<0.05) and fold change of�2. We used DAVID
bioinformatics resources (20) version 6.8 and gene set enrichment
analysis (GSEA; including PreRanked test; ref. 21) to find signif-
icant pathways, gene ontology terms and transcription factormotif
analysis with default parameter.

Independent dataset of LCs
To validate our novel molecular subtyping, we used gene

expression and mutation data from an independent LC (n ¼ 65)

dataset. The gene expression and mutational data were down-
loaded from supplement data files (https://www.nature.com/
articles/ncomms4518#supplementary-information) reported in
ref. 9. This gene expression data were reported as transcript
expression instead of gene expression.We used callapseRows (22)
on transcript expression to convert to respective gene expression
usingMaxVariance option.Gene expression for LCs signature (top
100 variant genes fromour 30 LCsdataset)was extracted from this
RNAseqdataset. Unsupervised clustering andPCAanalysis on this
dataset were performed as previously described for our 30 LCs
dataset.

DNA methylation and analysis
DNAwere extracted from LC samples and interrogated for CpG

DNA methylation using the Illumina 450K array platform (Illu-
mina Inc.). For CpG DNA methylation data analysis, we used
ChAMP (23) package in R with default parameters. Briefly, IDAT
raw data files were imported in R and filtered to exclude samples
with detection P-value <0.01 and bead count <3 in at least 5% of
samples and normalized using FunctionNormalization (24).
Additional filtering was performed to remove probes that have
annotated SNPs, present on X and Y chromosome, and have CpG
probesmapped tomultiple locations.b values for 413,176probes
were used for all subsequent analysis. Subtype specific differen-
tially methylated CpG probes (DMP) and CpG island were
identified using COHCAP (default parameter; ref. 25). For DMP,
we focused on probes present at TSS1500/200 and first exon for
subsequent analysis. We integrated gene expression and DNA
methylation to investigate subtype-specific gene expression using
default parameter for COHCAP.integrate.avg.by.island with FDR
P value <0.01.

IHC staining
IHC staining was performed using commercially available

antibodies at optimal dilutions as follows: ASCL1 (a-MASH1;
monoclonal, 1:300; BD Biosciences) and S100 (monoclonal,
1:4,000; BG). Briefly, IHC was performed by a standard protocol
on Ventana Discovery XT automated stainer (Ventana Medical
Systems Inc.) for the S100 antibody. Antigen retrieval was per-
formed with Cell Conditioning 1 buffer (CC1; citrate buffer pH
6.0, Ventana). For the ASCL1 (a-MASH1) antibody, ER2 pretreat-
ment was used and the Leica Bondmax autostainer (Leica).
Immunoreactivity was performed on whole tissue sections of
formalin-fixed and paraffin-embedded tissue section as well as
on tissue microarray (TMA) constructed from 173 pulmonary
carcinoid tumors formalin-fixed, paraffin-embedded tumor speci-
mens were used for TMA construction. Briefly, 4 representative
tumor areas were marked on H&E-stained slides, and cylindrical
0.6-mm tissue coreswere arrayed from the corresponding paraffin
blocks into a recipient block using an automated tissue arrayer
ATA-27 (Beecher Instruments). From each TMA, 4-mm-thick par-
affin sections were prepared for IHC. In all, 173 cases with
adequate cores were available for IHC analysis (26). The results
were semiquantitatively scored based on the percentage of reac-
tive tumor cells (�25% tumor cells) and the intensity of staining.

Data availability
The authors declare that all data supporting the findings of this

study are available within the article and its Supplementary data
and figures. Data generated in this study were deposited to NCBI
underGEOSuperSeriesGSE118133 (GSE118131 for RNAseq and
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GSE118132 for 450K methylation). We do not impose any
restrictions on data availability.

Results
Patient cohort, clinical annotations, and mutational profile of
LCs

We analyzed 30 randomly selected and histologically con-
firmed, well-differentiated LCs (17 TCs and 13 ACs) comprising
the discovery dataset. Most specimens were from pulmonary
lobectomy with lymph node detection. Tumor locations, that is,
peripheral versus central (endobronchial), were assessed by com-
bination of radiographic reveal and pathologic observations.
Fifty-four percent (7/13) of ACs had either lymph node or distant
metastasis, whereas 6% (1/17) of TCs had local lymph node
metastasis. The 5-year disease-specific survival was 89% and 55%
for TC and AC, respectively. Clinical information and features are
presented in Supplementary File S1. In addition, a TMA contain-
ing 173 cases of LCs had been prepared previously (26) and used
for study of clinical correlates.

We performed targeted sequencing of a 354-cancer gene panel
(MSK-IMPACT; ref. 11) on 29 LCs from the discovery dataset. The
mutated genes were enriched for those implicated in covalent
histone modification/chromatin remodeling and found in 10
samples [MEN1 (13.8%), ARID1A (10%), KMT2A (3%), KMT2C
(7%), KMT2D (3%), and SMARCA4 (3%)] reproducing the
results from a previous study (9). We also found mutations in
DNA repair pathways (17.2% of samples) (Supplementary File
S2; Fig. 1A). Mutations were not detected in the 354-cancer gene
panel for 13 LC samples.Mutations inMEN1, themost frequently
mutated gene, were found in 4 samples (4 ACs) and 4 of these
mutations had variant allele frequencies higher than 70% indi-
cating LOH (Supplementary Fig. S1). One sample (Lu-Aty9) has 2
MEN1 mutations (an in-frame deletion and a missense substitu-
tion), a few bases apart on the same copy ofMEN1 (Supplemen-
tary File S2). The ARID1A gene is mutated in 3 samples with LOH
occurring in one of the 3 samples. Using variant allele frequencies
and LOH status of MEN1 and ARID1A, we found median
tumor purity to be 91% (Supplemental File S1), consistent with
our pathology-based estimates (Supplementary Table S1). In

Figure 1.

Three novel molecular subtypes of LCs with mutational, gene expression, and DNA CpGmethylation with distinct clinical features. A,Mutated genes in LCs on a
354-cancer gene panel. Samples summary from DNA (n¼ 29), methylation (n¼ 18), RNA-seq (n¼ 30), carcinoids samples (atypical (n¼ 13; gray), and typical
(n¼ 17; white) and specimen location [endobronchial, white (n¼ 9); peripheral, gray (n¼ 21)]. Samples are grouped according to their gene expression and DNA
methylation pattern. Orange, subtype 1 (LC1); red, subtype 2 (LC2; blue, subtype 3 (LC3). Column represents sample and row represents gene name. Gene
expression (n¼ 30) and DNA CpGmethylation (n¼ 18) analysis revealed three LC subtypes using unsupervised clustering and principal component analysis.
B, Heatmap of unsupervised clustering of top 100 variably expressed gene across all samples. C, Principal component analysis of top 3,000 variably expressed
genes. D, Heatmap of unsupervised clustering of top 500 variable methylated CpG probes. E, Principal component analysis of top 3,000 variable methylated
CpG probes.
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addition to MEN1, other genes encoding SET1/MLL complex
proteins are also found mutated [KMT2A (3%), KMT2C (7%),
KMT2D (3%)]. One sample (Lu-ty4) has the highest number of
mutations (9) including mutations in POLE (DNA polymerase B
domain: V1016M),ROS1, FAT1,NBN,PARP1, andTERT (in-frame
deletion close to Telomerase RBD). We found homozygous dele-
tions only in the FANCA and RAD51 genes in 2 different ACs. The
most recurrent CNV are single copy deletions in FANCA (17%),
FAT1 (10%),MEN1 (7%),ATM (17%), SDHD (17%), andCHEK1
(17%), many of which reside on chr11q. We did not observe
changes in the transcription levels of these genes with hemizygous
deletions in comparison to wild-type samples. There are 18 sam-
ples (4 ACs and 14 TCs) with normal karyotype, 6 samples (4 ACs
and 2 TCs) with nearly normal karyotype (aneuploid for only one
or 2 different chromosomes), and 6 samples (5 ACs and 1 TCs)
with aneuploidy in more than 2 different chromosomes in our
dataset (Supplementary File S2). We did not find any known
pathogenic germline mutations in the panel of cancer-associated
genes in our samples.TP53 andRB1 geneswere notmutated in this
cohort, unlike high-grade lung NETs and SCLC.

Transcriptome and methylome profiles reveal three distinct
subtypes

We performed RNA-seq on 30 LCs (13 ACs and 17 TCs) and
DNA methylation analysis on 18 LCs (12 of the 30 samples did
not have sufficient material for analysis) from the discovery

dataset. Unsupervised clustering and principal component
analysis on the top 3,000 variable genes showed 3 distinct
clusters (Fig. 1B and C). These clusters are robust when different
numbers of top variable genes were used for clustering
(Supplementary Fig. S2). We named these subtypes LC1, LC2,
and LC3. Heatmap of Pearson correlation on top 3,000 variable
genes shows 3 blocks representing the 3 evident subtypes
(Supplementary Fig. S3). The top 100 variable genes (Supple-
mentary Fig. S4) across all LCs show enrichment for gene
ontologies related to hormonal secretions, endogenous stim-
ulus, wound healing, and developmental processes (Supple-
mentary Table S2). Gene expression analysis revealed greater
similarity between LC2 and LC3 as compared with LC1 (Sup-
plementary Figs. S3 and S4).

We investigated the DNA methylation profiles of LCs (n ¼
18), using the Illumina 450K microarray. Unsupervised clus-
tering and PCA of the top 3,000 variable CpG sites revealed 3
distinct subtypes in complete agreement with the gene expres-
sion based subtypes (Fig. 1D and E). Consistent with gene
expression, we also observed greater similarity of DNA meth-
ylation levels for LC2 and LC3 subtypes when compared with
LC1. The 3 grouping of subtypes was robust and reproducible
using different numbers of top variable CpG sites (Supple-
mentary Fig. S5). Total genome-wide DNA methylation level
is not different between the 3 subtypes (Supplementary
Table S3).

Figure 2.

Heatmap of differentially expressed
genes between LC subtypes.
Supervised analysis on LC subtypes
reveals differential expression of
transcription factor and neuropeptide
(some are highlighted on the left side
of the heatmap). Heatmap expression
level is in z-score.
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Subtype-specific molecular characterization of LCs
We investigated gene expression and CpG DNA methylation

profiles to determine subtype-specific molecular alterations (see
Materials and Methods section). Genes upregulated in LC2 and
LC3 as compared with LC1 are enriched for having the tran-
scription factor motifs for HNF1 (FDR q-value <0.001) and
HNF4 (FDR q-value <0.001; Fig. 2; Supplementary File 3). This
is in agreement with the observed high gene expression and
DNA hypomethylation of HNF1A, FOXA3, and HNF4A in LC2
and LC3 as compared with LC1 (Fig. 3A and B; Supplementary
Fig. S6). In addition, many of the most highly expressed genes
(APOH, GC, HAO1, G6PC, TM4SF4, PKLR, UGT2B17, CDH1,
and SERPINA1/2/6) in LC2 and LC3 are targets of these hepa-
tocyte nuclear factors (Fig. 2). Cancer hallmark gene set enrich-
ment analysis shows complement and coagulation, xenobiotic,
retinol and bile acid metabolism to be significantly upregulated
in LC2 and LC3 as compared with LC1, a gene signature also
found in subset of pancreatic neuroendocrine tumors (Supple-
mentary File 3; ref. 14). However, we also identified TFs that are
differentially expressed between LC2 and LC3 (FEV and
POU3F4 are more highly expressed in LC2 and LC3,
respectively; Fig. 2; Supplementary File S3). MEN1 gene is

required for regulation of several members of the HOX gene
family (27). Indeed, the LC2 subtype, which included all of the
MEN1 mutant samples, has low expression of HOXB2/3/4/5/
6 genes as compared with LC1 and LC3 (Supplementary
Fig. S7).

We integrated subtype-specific CpG DNA methylation (see
Materials and Methods section) with gene expression by focusing
on CpG sites between 1,500 bps and 200 bps upstream to the
transcription start site (TSS) and in the first exon, which have been
shown to inversely correlate with gene expression (28). Fig. 3A
shows subtype-specific differentially methylated CpG probes
(DMP) and their inverse correlation with neighboring gene
expression. We found 75 genes with expression to be significantly
anticorrelated with respective CpG islandmethylation level (FDR
P-value < 0.01; Supplementary File S4). HNF1A and FOXA3 are
hypermethylated and low expressed in LC1. FEV, GATA2, and
PROCR are hypomethylated and highly expressed in LC2. SOX1 is
hypermethylated and low expressed in LC2. SIX2,ONECUT2, and
IL1RL2 are hypomethylated andhighly expressed in LC3 (Fig. 3B).
Many of these observations suggest further mechanistic studies
but there are currently no appropriate LC cell lines or animal
models available.

Figure 3.

Subtype-specific molecular characterization of gene expression and DNAmethylation profiles. A, Heatmap of differentially methylated CpG sites (probes from
TSS1500, TSS200, and first exon) of genes among the three LC subtypes. Some genes with altered gene expression and CpG sites are highlighted on the left of
heatmap. Dark black line, subtype-specific blocks. B,Anticorrelation of gene expression and respective CpG island methylation (18 matched samples) for HNF1A,
FOXA3, FEV, and ILRL2 across three subtypes. Each plot represents gene expression on x-axis and average CpG island b value on y-axis along with Pearson
correlation (r) and P value (P) are on top of the plot.
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Independent validation of LC classification
We validated our novel classification and gene expression

biomarkers using published LC data from Fernandez-Cuesta and
colleagues (9), which include genome/exome and RNA sequenc-
ingof 65 samples (56TCs, 6ACs and3 carcinoids). Usingour gene
signatures derived from the top 100 most variable genes (Sup-

plementary File S5) across LCs, we found3 distinct subtypes using
unsupervised clustering and PCA that are consistent with the
subtypes identified from our data (Fig. 4A and B; Supplementary
Fig. S8).Moreover, allMEN1mutated LCs are found exclusively in
LC2 (Fig. 4B). In addition, we foundHNF1A and FOXA3 aremore
highly expressed in LC2 and LC3 as compared with LC1 whereas
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Validation of novel classification of LC on an independent collection of LCs from Fernandez-Cuesta and colleagues (9). A and B, Principal component analysis
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three distinct subtypes LC1 (orange), LC2 (red), and LC3 (blue). Black sticks represent samples withMEN1mutations and they are all found in subtype LC2. C,
Boxplot of ASCL1 and S100 gene expression from Fernandez-Cuesta and colleagues (9) is consistent with LC subtypes. Centerline, median; bounds of box, the
first and third quartiles; and upper and lower whisker is defined to be 1.5� interquartile range more than the third and first quartile.
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Laddha et al.

Cancer Res; 79(17) September 1, 2019 Cancer Research4344

on January 28, 2020. © 2019 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 12, 2019; DOI: 10.1158/0008-5472.CAN-19-0214 

http://cancerres.aacrjournals.org/


FEV is highly expressed only in LC2 consistent with our data
(Supplementary Fig. S9).

ASCL1 and S100 are novel biomarkers for LC subtypes
We selected genes with distinct subtype-specific expression to

test for use as biomarkers. ASCL1 encodes a transcription factor
that plays a role inneuronal differentiation andproliferation (29),
neuroepithelial bodies formation (30), and is a lineage-specific
oncogene for high-grade neuroendocrine lung cancer (31).ASCL1
is significantly highly expressed in LC1 along with its transcrip-
tional targets (Figs. 4C and 5A; Supplementary Fig. S10). S100, a
family of proteins containing 2 EF-hand calcium-binding motifs,
is implicated in tumor progression and poor prognosis (32). Its
gene expression levels are significantly higher in subtype LC2
(Fig. 5A).We performed IHC staining ofASCL1 and S100 to use as
biomarkers. ASCL1 stained positively only for LC1 samples (n ¼
11) and S100 stained positively only for LC2 samples (n ¼ 5)
(Fig. 5B). Both of these genes stained negatively for LC3 samples
(n ¼ 4; Supplementary Table S4).

Additionally, we performed ASCL1 and S100 IHC staining on a
panel of 173 LCs TMA (Supplementary File S6). ASCL1 positive
and S100 negative samples (n¼ 54) were designated LC1. ASCL1

negative and S100positive samples (n¼15)were designated LC2.
ASCL1 negative and S100 negative samples (n ¼ 71) were desig-
nated LC3. Fifteen percent of the TMA samples stained positive for
ASCL1 and S100, which are not represented in our discovery
dataset.

Cell cycle and mitotic genes are highly expressed in ACs of LC1
Pathologically, ACs are more aggressive and have a higher

mitotic index in comparison to TCs. To find the gene signature
responsible for these features of ACs, we compared ACs (n ¼ 13)
and TCs (n¼ 17) from our 30 LC cohort. Surprisingly, we did not
find cell cycle or mitosis-related genes to be differentially
expressed. We then controlled for LC subtypes and compared
ACs (n ¼ 8) and TCs (n ¼ 7) from subtype LC1 and found
differentially expressed genes (Fig. 6) were then enriched for
mitotic and cell cycle related pathways with high expression in
the ACs (Supplementary File 7). Of the 8 AC tumors, the 3 with
highest gene expression signature for mitotic/cell-cycle pathway
havemetastases or recurrences whereas only 1 of the 5 with lower
gene expression signature have recurrence or metastases (Fig. 6).
We also observed high aneuploidy in the ACs with high gene
expression signature ofmitotic/cell-cycle pathway. We performed

Figure 6.

Heatmap of differentially expressed genes between ACs and TCs within LC1 subtype. Upregulated genes in ACs (of LC1) are significantly enriched for genes
involved in cell cycle/mitosis.
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the same analysis for ACs and TCs from LC2 and did not find any
significant gene signatures, whichmay be due to the small sample
size of LC2.

LC subtypes have distinct clinical phenotypes
The 3 subtypes of LCs have distinct clinical phenotypes. Sub-

type LC1 is enriched for peripheral lung (P-value <0.003 in
discovery dataset; P-value <0.002 in TMA), whereas subtype LC3
is found predominately at endobronchial lung (P-value < 0.054
in discovery dataset; P-value <3.8e�5 in TMA; Fig. 1A, box;
Supplementary File S1). Subtype LC3 has significantly younger
age of diagnosis (median age of 33, 44.5, and 48 years in
discovery, Fernandez-Cuesta and colleagues (9), and TMA data-
sets, respectively) than LC1 (median age of 67, 66, and 60 years,
respectively) and LC2 (median age of 62.5, 57, and 65 years,
respectively; Supplementary Fig. S1A and S1B). LC1 subtype was
enriched for female patients (6.5-fold, P-value < 0.007 in discov-
ery dataset; 3.9-fold, P-value < 1.4e�5 in TMA) but not for LC2 or
LC3 (Supplementary File S1).

Discussion
We identified 3 novel molecular subtypes of LCs with distinct

clinical features using gene expression, DNA methylation, and
mutational profiles (Fig. 7). Integrative analysis of gene expres-
sion and DNA methylation identified subtype-specific tran-
scriptional profiles of key differentiation transcription factors
(ASCL1, HNF1A, FOXA3) and their downstream target genes.
Mutational analysis revealed recurrent mutations in chromatin
remodeling genes found in all subtypes of LCs with exception
of MEN1 mutations occurring only in subtype LC2 tumors.
Importantly, we found mutations in DNA repair genes in 17%
of our LC samples. Subtype LC3 has younger age of diagnosis
and is predominantly endobronchial, whereas subtypes LC1
are predominantly found in peripheral regions of the lung.
These findings may argue that subtypes of LC potentially
originate from different neuroendocrine cell lineages,
although the lack of available cell-type–specific gene markers
prevents a definitive validation beyond speculation at this
time. Nevertheless, we believe that a more comprehensive

single-cell approach can uncover lung NE cell-type–specific
gene signatures and reveal the cells of origin for the LC
subtypes. The younger age of diagnosis for LC3 by 15 to
20 years as compared with LC1 and LC2 may be due to earlier
diagnosis from the clinically symptomatic tumors located in
the central lung as compared with asymptomatic tumors at the
peripheral lung or suggest a possible distinct pathogenesis
predisposing to LC3, including germline mutations. However,
we were not able to detect any pathogenic germline mutations
in the panel of cancer-associated genes used in the MSK
IMPACT testing for any of the LCs. Our classification and gene
expression biomarkers were validated in 65 additional LC
samples from Fernandez-Cuesta and colleagues (9). Using our
subtype classification, we found gene signature for cell cycle
and mitotic processes activated in ACs as compared with TCs
of the LC1 subtype and those ACs with the high gene signature
have worst outcome (Fig. 6; Supplementary File 7). This gene
signature will need to be reproduced with a larger sample size
but may potentially serve as a diagnostic and prognostic
biomarker to differentiate malignant from more benign ACs
from subtype LC1. This gene signature is specific to LC1 and
would not have been found from comparing ACs to TCs from
all LCs demonstrating the need to study distinct subtypes
individually.

Our molecular classification introduces 3 subtypes of LCs with
distinct clinical phenotypes. This can refine and complement the
WHO classification of LCs into typical or ACs and help diagnose
ambiguous cases of LCs from the more malignant LCNEC and
SCLC. In addition, the stratification of LCs into distinct molecular
subtypes will help with future study of their tumorigenesis,
prognosis, and treatment options.
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A B S T R A C T

Introduction: The majority of pulmonary carcinoid (PC) tumors can be cured by surgical resection alone, but a
significant proportion of patients experience recurrence. As PC is insensitive to conventional chemotherapy,
further clarification of the molecular mechanisms of metastasis is needed in order to develop targeted ther-
apeutics.
Methods: We performed comprehensive whole-exome sequencing (WES) of primary tumors and corresponding
normal lung tissues from 14 PC patients (including 4 patients who developed postsurgical distant metastasis) and
RNA sequencing of primary tumors from 6 PC patients (including 4 patients who developed postsurgical distant
metastasis). Exon array-based gene expression analysis was performed in 25 cases of PC.
Results: We identified a total of 139 alterations in 136 genes. MUC6 and SPTA1 were recurrently mutated at a
frequency of 21% (3/14) and 14% (2/14), respectively. Mucin protein family genes including MUC2, MUC4 and
MUC6 were mutated in a mutually exclusive manner in 36% (5/14). Pathway analysis of the mutated genes
revealed enrichment of genes involved in mitogen-activated protein kinase (MAPK) signaling, regulation of the
actin cytoskeleton and focal adhesion, and transforming growth factor (TGF)-β signaling. RNA sequencing re-
vealed a total of 8 novel fusion transcripts including one derived from a chromosomal translocation between the
TRIB2 and PRKCE genes. All of the 8 fusion genes were detected in primary PCs that had developed metastasis
after surgical resection. We identified 14 genes (DENND1B, GRID1, CLMN, DENND1B, NRP1, SEL1L3, C5orf13,
TNFRSF21, TES, STK39, MTHFD2, OPN3, MET, and HIST1H3C) up-regulated in 5 PCs that had relapsed after
surgical resection.
Conclusions: In this study we identified novel somatic mutations and chromosomal rearrangements in PC by
examining clinically aggressive cases that had developed postsurgical metastasis. It will be essential to validate
the clinical significance of these genetic changes in a larger independent patient cohort.

1. Introduction

Neuroendocrine (NE) tumors of the lung comprise four distinct
histologic types: typical carcinoid (TC), atypical carcinoid (AC), large

cell neuroendocrine carcinoma (LCNEC), and small cell lung carcinoma
(SCLC), as listed in the 2015 World Health Organization (WHO) clas-
sification of tumors of the lung, pleura, thymus and heart [1]. Although
these four tumor types are grouped into the same category, PC (TC and
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AC) is not an early progenitor lesion of LCNEC or SCLC [2]. PC has
distinct epidemiologic, clinical, histological, and genetic character-
istics, and its incidence is not associated with cigarette smoking. Pa-
tients with PC are significantly younger and have a better prognosis
than those with LCNEC or SCLC [3].

In the WHO classification, TC is defined as a low-grade neu-
roendocrine tumor lacking necrosis and having less than 2 mitoses per 2
mm2. AC is defined as an intermediate-grade neuroendocrine tumor
displaying 2–10 mitoses per 2 mm2 and/or the presence of necrosis.
Necrosis is usually absent, but if present it tends to be focal or punctate
[1]. In our large retrospective study, the 5-year survival rate of patients
with completely resected TC was 96% [4]. AC is prone to locoregional
lymph node and distant metastasis and has a 5-year survival rate of
78% [4]. PC is generally insensitive to chemotherapy and radiotherapy,
and no effective treatment has been established for PC patients with
systemic metastasis and those who develop postsurgical metastasis
[5–7]. PC patients with distant metastasis at the time of diagnosis re-
portedly have a 5-year survival rate of 14–25% [8].

The emergence of so-called next-generation sequencing (NGS)
technologies has enabled rapid genome-wide surveys of oncogenic and
tumor suppressive signaling molecules in various cancers [9–11] and
accelerated understanding of cancer biology and the development of
novel diagnostics and therapeutics. Recent large-scale sequencing stu-
dies have revealed that PC has a large variety of genetic abnormalities
[2,12,13], but it is still unclear which genetic alterations or pathways
are key players the development and progression of PC.

In the present study, we performed a comprehensive whole exon
(exome) and RNA sequencing analysis of PC and revealed recurrent
mutations in the mucin protein family genes. Here we report a novel
association of chromosomal rearrangements with the postsurgical me-
tastasis of PC.

2. Materials and methods

2.1. Tissues samples

The study protocol was reviewed and approved by the Institutional
Review Board of the National Cancer Center (NCC) (Tokyo, Japan).
Informed consent was obtained from 25 patients with PC (20 TC and 5
AC) who underwent lobectomy at the NCC Hospital (Tokyo, Japan)
between 1998 and 2010 prior to specimen collection. Tissue samples
were snap-frozen in liquid nitrogen within 30 min of surgical resection
and stored by the National Center Biobank Network (NCBN). The his-
topathological diagnosis of PC was made by expert pathologists in ac-
cordance with the 2015 WHO classification.

2.2. DNA and RNA preparation, cDNA synthesis, and transcriptome
analysis

Genomic DNA was extracted using the DNeasy Blood and Tissue kit
(Qiagen) according to the manufacturer’s protocol. Total RNA was ex-
tracted using TRIzol reagent (Invitrogen) or RNeasy Mini Kit columns
(Qiagen) in accordance with the manufacturer’s protocol. RNA quality
was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies).
All samples showed RNA Integrity Numbers of> 7.0. The quantity of
genomic DNA and total RNA was determined using a NanoDrop 2000
Spectrophotometer (Thermo Scientific). rRNA reduction, first-round
double-strand cDNA synthesis, cRNA synthesis, second-round single-
strand (ss)-cDNA synthesis, ss-cDNA fragmentation, and labeling were
performed in accordance with the Affymetrix GeneChip Whole-
Transcript Sense Target–Labeling Assay manual. Affymetrix Human
Exon 1.0 ST arrays were hybridized overnight with 5 μg biotin-labeled
ss-cDNA.

2.3. Wes

Three micrograms of genomic DNA was used to construct libraries
for sequencing. The quality of the constructed libraries was assessed
using an Agilent 2100 Bioanalyzer. All the exon genes were captured
using a SureSelectXT Human All Exon kit v3 (Agilent) in accordance
with the SureSelectXT Target Enrichment for Illumina Paired-End
Multiplexed Sequencing Protocol 1.1.1. Enriched libraries were se-
quenced using an Illumina Genome Analyzer IIx. Base calling was
performed using the Illumina Pipeline (CASAVA v1.8) with default
parameters. Adaptor trimming was performed using cutadapt v1.2.1
with the parameters "-O 9 -m 32″. Read cleaning was performed using
the "fastq_quality_rimmer -l 32″ and "fastq_quality_filter -q 10 -p 95″
commands in FASTX-Toolkit v 0.0.13 followed by paired reads ex-
traction using cmpfastq_pe. Cleaned reads were mapped on UCSC hg19
using the "bwa aln" and "bwa sampe" commands with default para-
maters in BWA v0.5.9. Duplicate reads were marked using Picard
MarkDuplicates. Realignment and base recalibration were performed
using RealignerTargetCreator/IndelRealigner and CountCovariates in
GATK v1.6, respectively. Somatic variant calling was performed using
Strelka v1.0.14 and Virmid v1.1.1 with default parameters. Variants
were annotated using SnpEff v3.6c.

2.4. RNA sequencing

Total RNA (14−36 μg) was used for the construction of libraries
using the TruSeq RNA Sample Preparation Kit (v2, Illumina). Libraries
were used to generate clustered flowcells on cBot using the TruSeq PE
Cluster Kit v2. Paired-end sequencing (75-base) was performed on an
Illumina Genome Analyzer IIx sequencer using a TruSeq SBS Kit v5. The
Illumina software pipeline was used for processing of image data into
raw sequencing data (SCS v2.9 and CASAVA v1.8.1). Sequence reads
marked as “passed filtering” were used for selection of fusion genes
using the deFuse program [14,15].

2.5. Dideoxynucleotide sequencing

Total RNA was reverse-transcribed into cDNA using a High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) with random
priming. Genomic DNA or cDNA was amplified using EmeraldAmp PCR
Master Mix (TaKaRa Bio) with relevant primer pairs (Supplementary
Table S1) designed by Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/
primer3/input.htm). The amplified PCR products were sequenced using
the Big Dye Terminator Cycle Sequencing kit on an ABI 3100 genetic
analyzer (Applied Biosystems). Sequence data were analyzed using the
Sequencher software v.5.1. (Gene Codes Corporation).

2.6. Fluorescence in situ hybridization (FISH)

FISH analysis was performed using a dual-color fluorescence-la-
beled probe set for the TRIB2 and PRKCE genes (Orange dUTP-labeled
TRIB2 and Green dUTP-labeled PRKCE probes) (Chromosome Science,
Sapporo, Japan), as described previously [16]. Chromosomal localiza-
tion and specificity of probe hybridization were validated on metaphase
spreads of normal human lymphocytes.

2.7. Identification of driver genes and pathways

To identify cancer genes with mutations that drive the cancer
phenotype and related pathways in the genome sequencing data, the
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database
was searched using the DrGap program (https://code.google.com/
archive/p/drgap/) [17].
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2.8. Real-time PCR

First-strand cDNA was synthesized from 1 μg of total RNA using a
high-capacity cDNA reverse transcription kit (Life Technologies) in
accordance with the manufacturer’s instructions. Real-time PCR has
performed as described previously [18]. Primers and probes sets were
obtained from Applied Biosystems, and their Assay IDs are provided in
Supplementary Table S2. The amplification reaction was performed in
accordance with to the manufacturer’s instructions (95 °C for 10 min
followed by 40 cycles of 95 °C for 15 s, 50 °C for 2 min, and 60 °C for 1
min).

2.9. Statistical analysis

Overall survival was measured as the period from surgery to the
date of death or last follow-up. All statistical analyses were performed
using tools available in the R statistical package (version 3.6.1; http://
www.r-project.org/). Differences at P<0.05 were considered to be
statistically significant.

2.10. Database deposition

Gene expression, WES, and RNA sequencing data have been de-
posited in the Gene Expression Omnibus (GEO) database with the ac-
cession numbers, GSE141755, GSE142190, and GSE142186, respec-
tively. The deposits have been integrated into GSE142191.

3. Results

3.1. Clinicopathological characteristics of PC

The clinical and pathological characteristics of the 25 PC patients
examined in this study are summarized in Table 1. There were 20 with
TC (80%) and 5 with AC (20%). Nineteen cases (76%) were diagnosed
at pathological stage I [according to the International Union Against
Cancer (UICC) TNM Classification of Malignant Tumors, 8th edition
(2017)], 5 cases (20 %) at stage II, and 2 (8%) cases at stage III. No
patient had distant metastasis at the time of surgery or received sys-
temic treatment after surgical resection. The follow-up periods ranged
from 3 to 83 months (median follow-up, 49 months). Four (80 %) of the

5 patients with AC developed metastases, but one (5%) of the 20 pa-
tients with TC also developed metastases and one (20 %) of the 5 pa-
tients with AC (stage IB) did not developed metastasis within 5 years
after surgical resection. This indicates that the histological classification
of PC (TC or AC) is not sufficient for prediction of recurrence. Although
no patients lacking histological lymphovascular tumor invasion devel-
oped recurrence, the presence of lymphovascular invasion was not
predictive of postsurgical recurrence (Table 1).

3.2. Exon array-based expression profiling

The 25 PC samples were subjected to genome-wide transcriptome
analysis using the GeneChip Human Exon 1.0 ST array. This exon array
can detect mRNAs with low abundance as well as alternatively poly-
adenylated and spliced mRNA, because the probes are designed to
hybridize to the entire sequences of transcripts [19]. In PCs that de-
veloped postsurgical metastasis, we identified 14 genes (DENND1B,
GRID1, CLMN, DENND1B, NRP1, SEL1L3, C5orf13, TNFRSF21, TES,
STK39, MTHFD2, OPN3, MET, and HIST1H3C) that were up-regulated
and 71 that were down-regulated [> 2-fold, p<0.05 (t test with no
correction)] (Supplementary Tables S3 and S4). The 85 genes that were
differentially expressed were clustered according to the similarity of
their expression profiles (Fig. 1A), and the differential expression of
representative genes was validated by real-time PCR in 5 cases that
recurred (solid columns, Fig. 1B) and 5 cases that did not (clear col-
umns, Fig. 1B). Patients with high expression of the MET, TES, and
STK39 genes showed a significantly unfavorable outcome (Fig. 1C).

3.3. Recurrent mutation of mucin genes

We performed the whole-exon sequencing of paired normal and
tumor samples from 14 PC patients (10 TC and 4 AC). Under stringent
selection criteria [14], we identified a total of 139 somatic alterations in
136 genes (Supplementary Table S5) [mean somatic mutation rate of
0.3 per megabase (Mb)]. The number of somatic alterations was asso-
ciated with both Ki67 index [20] (p<0.01, t test) and mitotic counts
(per 2 mm2) (p<0.01, t test), but not with recurrence after surgery (p
= 0.187, t test). Eighteen representative alterations were validated by
dideoxynucleotide sequencing. Recurrent mutations were detected in 2
genes (MUC6 and SPTA1) with a frequency of 21% (3/14) and 14% (2/

Table 1
Clinico-patholocial characteristics of 25 PC patients examined in this study.

All patients (n = 25) Recurrence (−) (n = 20) Recurrence (+) (n = 5) p-values*

Gender Male 15 (60) 11 (44) 4 (16) 0.615
Female 10 (40) 9 (36) 1 (4)

Age ≥ 65 7 (28) 7 (28) 0 0 0.274
< 65 18 (72) 13 (52) 5 (20)

Hisologic subtype Typical carcinoid 20 (80) 19 (76) 1 (4) 0.0019
Atypical carcinoid 5 (20) 1 (4) 4 (16)

Smoking status Never smoked 17 (68) 14 (56) 3 (12) 1
Current or former smoker 8 (32) 6 (24) 2 (8)

Pathological stage I 17 (68) 17 (68) 0 0 0.0011
II and III 8 (32) 3 (12) 5 (20)

Tumor size ≥3 cm 18 (72) 16 (64) 2 (8) 0.113
<3 cm 7 (28) 4 (16) 3 (12)

Surgical margin (microscopic) Negative 22 (88) 18 (72) 4 (16) 0.504
Positive 3 (12) 2 (8) 1 (4)

Lymphovascular invasion Absent 16 (64) 16 (64) 0 0 0.0024
Present 9 (36) 4 (16) 5 (20)

Ki67 index <5% 21 (84) 18 (72) 3 (12) 0.166
≥5% 4 (16) 2 (8) 2 (8)

Mitosis < 2 20 (80) 19 (76) 1 (4) 0.0019
≥2 5 (20) 1 (4) 4 (16)

Lymph node metastasis Absent 19 (76) 17 (68) 2 (8) 0.0698
Present 6 (24) 3 (12) 3 (12)

p values of< 0.05 are shown in bold.
* Fisher’s exact test.
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14), respectively (Fig. 2). Interestingly, we also detected mutations in
other mucin genes (MUC2 and MUC4) in one sample each. In total, 5
(36%) of the 14 PCs were found to carry mutually exclusiveMUC family
gene mutations.

3.4. Pathway analysis of mutated genes

To identify the unique sets of genes associated with the pathogen-
esis of PC, the 136 mutated genes were evaluated using the DrGaP

Fig. 1. Gene expression profiles associated with PC recurrence.
(A) Hierarchical clustering of 85 genes whose expression differed
significantly (p<0.05 and> 2-fold change) between PCs that
developed metastasis (n = 5) and PCs that did not (n = 20).
(B) The expression levels of 3 representative genes (MET, TES, and
STK39) significantly up-regulated in PC that developed metastasis
were validated by real-time RT-PCR.
(C) Kaplan–Meier estimates of the overall survival of patients with
PCs showing levels of MET, TES, STK39 gene expression lower
(blue) or higher (red) than the cut-off values with the lowest p
values determined as described previously [41]. Differences be-
tween curves were evaluated using the log-rank test. (For inter-
pretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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program, which is designed to identify driver genes and pathways.
Among the 136 genes, we found significant (< 1.0 × 10−5) enrichment
of genes involved in MAPK signaling (CACNA1E, PPP3R2, TGFB2,
MECOM, and CHUK), regulation of the actin cytoskeleton (ITGA2,
ITGB6, PPP1CB, and WASL), focal adhesion (LAMC1, THBS2, ITGA2,
ITGB6, PPP1CB, and PTEN), TGF-β signaling (THBS2 and TGFB2), cy-
tosolic DNA-sensing, and insulin signaling (Table 2). There were sig-
nificant differences in mutation type (non-synonymous, nonsense and
frame-shift, or splice site mutation) and frequency among the cases, but
none of the somatic mutations (Supplementary Table S5) or pathways
(Fig. 2) was found to be associated with PC recurrence.

3.5. Chromosomal rearrangements in PC

We next performed RNA sequencing of tumor samples from 6 PC
patients (including 4 who developed postsurgical metastasis) and
identified a total of 8 novel fusion transcripts (Supplementary Table
S6). All of the 8 fusion genes were subsequently validated by RT-PCR
across their relevant exon-exon boundaries and by dideoxynucleotide
sequencing. The inter- and intrachromosomal translocations re-
sponsible frequently involved chromosomes 1, 2, 9, 12, 17, and 20
(Fig. 3A). Only the SUZ12 gene in chromosome 7 was recurrently in-
volved in the sites of chromosomal translocation (Supplementary Table
S6). The detection of fusion genes was associated with mitotic counts (p
= 0.032, t test), but not with Ki67 index (p = 0.14, t test) (Supple-
mentary Table S7). It is noteworthy, however, that all of the 8 fusion

Fig. 2. Somatic mutations of PC.
One hundred thirty nine somatic mutations detected by WES were classified according to KEGG pathways. Green, non-synonymous mutations; Red, nonsense and
frame-shift mutations; Yellow, splice site mutation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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genes were detected only in 4 cases that had developed postsurgical
metastasis (Supplementary Table S7).

Of the 8 fusion transcripts, only TRIB2-PRKCE involved a tyrosine
kinase gene. Protein kinase C epsilon (PRKCE), a member of the novel
protein kinase C (PKC) family, plays key roles in the mitogenesis and
survival of normal and cancer cells [21]. The TRIB2-PRKCE transcript
was an in-frame fusion between exon 1 of TRIB2 and exon 2 of PRKCE
(Fig. 3B) and deduced to encode a truncated protein lacking the N-
terminal C2 regulatory domain of PRKCE (Fig. 3C). The TRIB2 and
PRKCE genes are located on both chromosomes 2 (Fig. 3D). The in-
trachromosomal rearrangement involving the TRIB2 and PRKCE loci
was confirmed by FISH (Supplementary Fig. S1A). The TRIB2 gene has
15 exons (exons 1–15), but the expression of exon 1 was suppressed
(Supplementary Fig. S1B) probably by the chromosomal translocation.

4. Discussion

PC is a rare, low- or intermediate- grade tumor that contains sig-
nificantly fewer genetic abnormalities in comparison with other ma-
lignancies [2,22], and for this reason no definite therapeutic target
molecule has so far been identified. Fernandez-Cuesta et al. reported a
mean somatic mutation rate of 0.4 (comparable to this study) with
frequent mutations in chromatin remodeling genes, such as MEN1 and
ARID1A. They also identified a case with chromothripsis. The case
showed intensely clustered genomic structural alterations [copy
number variations (CNV) and chromosomal rearrangements] in chro-
mosomes 3, 12 and 13, but chromosomal translocation was infrequent
in PC and only a few fusion transcripts were detectable in other cases.
In this study, we were able to detect chromosomal rearrangements in all
4 cases that had developed postsurgical metastasis (Supplementary
Table S7). Chromosomal instability (CIN) has been considered a hall-
mark of cancers with unfavorable outcome. Detection of fusion genes
may represent the CIN status of PC and indicate a high risk of recur-
rence.

Among the fusion genes detected in this study, only TRIB2-PRKCE
was deduced to encode an in-frame fusion protein (Fig. 3 and Supple-
mentary Table S6). However, fusion transcripts involving the PRKCE,
SUZ12, and SFPQ genes have been repeatedly reported in other ma-
lignancies (Supplementary Table S8), indicating their involvement in
carcinogenesis. PKC is a family of serine/threonine specific protein ki-
nases that can be activated by calcium and the second messenger dia-
cylglycerol. PKC family members phosphorylate a wide variety of
protein targets and are known to be involved in diverse cellular sig-
naling pathways [23]. Genomic alterations in PKC family members
have been identified in several cancers [21,23–27]. Fusion transcripts
involving the PRKCE gene have been reported in colorectal, lung, and
breast cancers (Supplementary Table S8) [9,25]. The JAZF1/SUZ12

(suppressor of Zeste 12) gene translocation is the most frequent chro-
mosomal abbreviation in endometrial stromal sarcoma (ESS) and con-
sidered to be its cytogenetic hallmark (Supplementary Table S8)
[28,29]. SUZ12 is required for the gene expression program of em-
bryonic stem (ES) cell differentiation [30]. Expression of EZH2, which
is complexed with at least two of its non-catalytic partners, EED and
SUZ12, is required in order for Ewing tumors to maintain their cancer
stemness [31]. SFPQ (splicing factor, proline- and glutamine-rich)/PSF
(PTB-associated splicing factor) is a common fusion partner of TFE3 in
papillary renal cell carcinoma [32].

We detected recurrent mutations in the mucin genes (including
MUC2, MUC4, and MUC6) and the SPTA1 gene. The MUC4 mutation
was detected in exon 2. It has been reported that MUC4 mutations are
concentrated in the exon in lung cancer [33]. The high frequency of
mutations appeared to indicate involvement in pathogenesis. MUC4
encodes a membrane-spanning mucin glycoprotein on the ciliated
airway mucosal surface [34,35] and plays an important role in the
proliferation and differentiation of epithelial cells by regulating the
phosphorylation of ErbB2 and expression of the cyclin-dependent ki-
nase inhibitor p27 [36–38]. MUC6 encoding gastric mucin with a mu-
coprotective function was mutated in 9.6 % of microsatellite-stable
(MSS) and 18.2 % of microsatellite-unstable (MSI) gastric cancers [39].
Down-regulation of MUC6 protein was reported to correlate with ad-
vanced tumor stage and poor prognosis in gastric cancer [40]. Func-
tional characterization of MUC gene mutations may provide an avenue
by which they can be exploited as potential therapeutic targets. Genetic
alterations affecting the SPTA1 gene were reported to be present in 11.5
% of small cell lung cancers [41], but its pathological significance has
not been established.

The present and previous studies showed the different spectra of
somatic mutations. Table 3 lists preceding studies in which NGS was
employed. We speculate that the difference may have been due to the
small number of patients we included, differences in patient ethnicity,
and/or differences in the sequencing and bioinformatical methods
employed.

In this study we identified novel somatic mutations and chromo-
somal rearrangements by examining clinically aggressive PC cases that
had developed postsurgical metastasis. Unfortunately, none of the ge-
netic alterations except for the TRIB2-PRKCE fusion transcript was
considered technically actionable. Further investigation through a dif-
ferent molecular approach would be necessary to uncover targetable
genetic alterations in such patients. The functional relevance of 14
genes up-regulated in PCs that developed recurrence (Supplementary
Table S3) is now under investigation.

Table 2
Pathway analysis of genes mutated in PC.

KEGG pathway KEGG ID p-values Number of mutated genes Genes

MAPK signaling pathway hsa04010 5.11E−08 6 CACNA1B, CACNA1E, PPP3R2, TGFB2, MECOM, CHUK
Regulation of actin cytoskeleton hsa04810 1.01E−07 4 ITGA2, ITGB6, PPP1CB, WASL
Focal adhesion hsa04510 1.13E−07 6 LAMC1, THBS2, ITGA2, ITGB6, PPP1CB, PTEN
TGF-β signaling pathway hsa04350 1.33E−06 2 THBS2, TGFB2
Insulin signaling pathway hsa04910 3.94E−06 2 PPP1CB, ACACA
Cytosolic DNA-sensing pathway hsa04623 4.79E−06 2 POLR3B, CHUK
Apoptosis hsa04210 1.15E−05 2 CHUK, PPP3R2
ECM-receptor interaction hsa04512 1.55E−05 4 LAMC1, THBS2, ITGA2, ITGB6
DNA replication hsa03030 1.70E−05 2 RNASEH1, RFC1
Ubiquitin mediated proteolysis hsa04120 0.00157 2 HERC2, PARK2
Calcium signaling pathway hsa04020 1.58E−03 3 CACNA1B, CACNA1E, PPP3R2
HMT histone methylation reader u0002 0.00254 2 ASH1L, PRDM15
Cell cycle hsa04110 0.00727 2 E2F1, TGFB2
Endocytosis hsa04144 0.01207 2 TGFB2, ARAP2

Abbreviations: MAPK, mitogen-activated protein kinase; TGF-β, transforming growth factor-β; ECM, extracellular matrix; HMT, histone methyltransferase.
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Fig. 3. Identification of the TRIB2-PRKCE fusion gene.
(A) Intra/interchromosomal translocation detected in PC.
(B) Ideogram showing the intrachromosomal translocation of TRIB2 (chromosomes 2 at p24.3) and PRKCE (chromosome 2 at p16.3).
(C) Nucleotide and deduced amino acid sequences at the break/fusion point of the TRIB2-PRKCE transcript.
(D) Schematic representation of the deduced domain structure of TRIB2-PRKCE (TOP) and wild-type PRKCE (BOTTOM) proteins. Wild-type PRKCE contains the C2
[amino acids 1–99], zinc finger phorbol-ester/DAG-type [169–292], protein kinase [408–668], and AGC-kinase C-terminal [669–737] domains.
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Multi-Omics Factor Analysis—a framework for
unsupervised integration of multi-omics data sets
Ricard Argelaguet1,† , Britta Velten2,† , Damien Arnol1 , Sascha Dietrich3 , Thorsten Zenz3,4,5 ,

John C Marioni1,6,7 , Florian Buettner1,8,* , Wolfgang Huber2,** & Oliver Stegle1,2,***

Abstract

Multi-omics studies promise the improved characterization of
biological processes across molecular layers. However, methods for
the unsupervised integration of the resulting heterogeneous data
sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a
computational method for discovering the principal sources of vari-
ation in multi-omics data sets. MOFA infers a set of (hidden) factors
that capture biological and technical sources of variability. It disen-
tangles axes of heterogeneity that are shared across multiple
modalities and those specific to individual data modalities. The
learnt factors enable a variety of downstream analyses, including
identification of sample subgroups, data imputation and the detec-
tion of outlier samples. We applied MOFA to a cohort of 200 patient
samples of chronic lymphocytic leukaemia, profiled for somatic
mutations, RNA expression, DNA methylation and ex vivo drug
responses. MOFA identified major dimensions of disease hetero-
geneity, including immunoglobulin heavy-chain variable region
status, trisomy of chromosome 12 and previously underappreciated
drivers, such as response to oxidative stress. In a second applica-
tion, we used MOFA to analyse single-cell multi-omics data,
identifying coordinated transcriptional and epigenetic changes
along cell differentiation.
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Introduction

Technological advances increasingly enable multiple biological

layers to be probed in parallel, ranging from genome, epigenome,

transcriptome, proteome and metabolome to phenome profiling

(Hasin et al, 2017). Integrative analyses that use information

across these data modalities promise to deliver more comprehen-

sive insights into the biological systems under study. Motivated by

this, multi-omics profiling is increasingly applied across biological

domains, including cancer biology (Gerstung et al, 2015; Iorio

et al, 2016; Mertins et al, 2016; Cancer Genome Atlas Research

Network, 2017), regulatory genomics (Chen et al, 2016), micro-

biology (Kim et al, 2016) or host-pathogen biology (Soderholm

et al, 2016). Most recent technological advances have also enabled

performing multi-omics analyses at the single-cell level (Macaulay

et al, 2015; Angermueller et al, 2016; Guo et al, 2017; Clark et al,

2018; Colomé-Tatché & Theis, 2018). A common aim of such

applications is to characterize heterogeneity between samples, as

manifested in one or several of the data modalities (Ritchie et al,

2015). Multi-omics profiling is particularly appealing if the relevant

axes of variation are not known a priori, and hence may be

missed by studies that consider a single data modality or targeted

approaches.

A basic strategy for the integration of omics data is testing for

marginal associations between different data modalities. A

prominent example is molecular quantitative trait locus mapping,

where large numbers of association tests are performed between

individual genetic variants and gene expression levels (GTEx Consor-

tium, 2015) or epigenetic marks (Chen et al, 2016). While em-

inently useful for variant annotation, such association studies are

inherently local and do not provide a coherent global map of the

molecular differences between samples. A second strategy is the

use of kernel- or graph-based methods to combine different
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data types into a common similarity network between samples

(Lanckriet et al, 2004; Wang et al, 2014); however, it is difficult

to pinpoint the molecular determinants of the resulting graph

structure. Related to this, there exist generalizations of other

clustering methods to reconstruct discrete groups of samples

based on multiple data modalities (Shen et al, 2009; Mo et al,

2013).

A key challenge that is not sufficiently addressed by these

approaches is interpretability. In particular, it would be desirable to

reconstruct the underlying factors that drive the observed variation

across samples. These could be continuous gradients, discrete

clusters or combinations thereof. Such factors would help in

establishing or explaining associations with external data such as

phenotypes or clinical covariates. Although factor models that aim to

address this have previously been proposed (e.g. Meng et al, 2014,

2016; Tenenhaus et al, 2014; preprint: Singh et al, 2018), these

methods either lack sparsity, which can reduce interpretability, or

require a substantial number of parameters to be determined using

computationally demanding cross-validation or post hoc. Further

challenges faced by existing methods are computational scalability to

larger data sets, handling of missing values and non-Gaussian data

modalities, such as binary readouts or count-based traits.

Results

We present Multi-Omics Factor Analysis (MOFA), a statistical

method for integrating multiple modalities of omics data in an unsu-

pervised fashion. Intuitively, MOFA can be viewed as a versatile

and statistically rigorous generalization of principal component

analysis (PCA) to multi-omics data. Given several data matrices

with measurements of multiple omics data types on the same or on

partially overlapping sets of samples, MOFA infers an interpretable

low-dimensional data representation in terms of (hidden) factors

(Fig 1A). These learnt factors capture major sources of variation

across data modalities, thus facilitating the identification of contin-

uous molecular gradients or discrete subgroups of samples. The

inferred factor loadings can be sparse, thereby facilitating the link-

age between the factors and the most relevant molecular features.

Importantly, MOFA disentangles to what extent each factor is

unique to a single data modality or is manifested in multiple modali-

ties (Fig 1B), thereby revealing shared axes of variation between the

different omics layers. Once trained, the model output can be used

for a range of downstream analyses, including visualization, cluster-

ing and classification of samples in the low-dimensional space(s)

spanned by the factors, as well as the automated annotation of

factors using (gene set) enrichment analysis, the identification of

outlier samples and the imputation of missing values (Fig 1B).

Technically, MOFA builds upon the statistical framework of

group Factor Analysis (Virtanen et al, 2012; Khan et al, 2014; Klami

et al, 2015; Bunte et al, 2016; Zhao et al, 2016; Leppäaho & Kaski,

2017), which we have adapted to the requirements of multi-omics

studies (Materials and Methods): (i) fast inference based on a varia-

tional approximation, (ii) inference of sparse solutions facilitating

interpretation, (iii) efficient handling of missing values and (iv) flex-

ible combination of different likelihood models for each data

modality, which enables integrating diverse data types such as

binary-, count- and continuous-valued data. The relationship of

MOFA to previous approaches (Shen et al, 2009; Virtanen et al, 2012;

Mo et al, 2013; Klami et al, 2015; Remes et al, 2015; Bunte et al,

2016; Hore et al, 2016; Zhao et al, 2016; Leppáaho & Kaski, 2017) is

discussed in Materials and Methods and Appendix Table S3.

MOFA is implemented as well-documented open-source software

and comes with tutorials and example workflows for different appli-

cation domains (Materials and Methods). Taken together, these

functionalities provide a powerful and versatile tool for disentan-

gling sources of variation in multi-omics studies.

Model validation and comparison on simulated data

First, to validate MOFA, we simulated data from its generative

model, varying the number of views, the likelihood models, the

number of latent factors and other parameters (Materials and

Methods, Appendix Table S1). We found that MOFA was able to

accurately reconstruct the latent dimension, except in settings with

large numbers of factors or high proportions of missing values

(Appendix Fig S1). We also found that models that account for non-

Gaussian observations improved the fit when simulating binary or

count data (Appendix Figs S2 and S3).

We also compared MOFA to two previously reported latent vari-

able models for multi-omics integration: GFA (Leppäaho & Kaski,

2017) and iCluster (Mo et al, 2013). Over a range of simulations, we

observed that GFA and iCluster tended to infer redundant factors

(Appendix Fig S4) and were less accurate in recovering patterns of

shared factor activity across views (Appendix Fig S5). MOFA is also

computationally more efficient than these existing methods

(Fig EV1). For example, the training on the CLL data, which we

consider next, required 25 min using MOFA versus 34 h with GFA

and 5–6 days with iCluster.

Application to chronic lymphocytic leukaemia

We applied MOFA to a study of chronic lymphocytic leukaemia

(CLL), which combined ex vivo drug response measurements with

somatic mutation status, transcriptome profiling and DNA methyla-

tion assays (Dietrich et al, 2018; Fig 2A). Notably, nearly 40% of

the 200 samples were profiled with some but not all omics types;

such a missing value scenario is not uncommon in large cohort

studies, and MOFA is designed to cope with it (Materials and Meth-

ods; Appendix Fig S1). MOFA was configured to combine different

likelihood models in order to accommodate the combination of

continuous and discrete data types in this study.

MOFA identified 10 factors (minimum explained variance 2%

in at least one data type; Materials and Methods). These were

robust to algorithm initialization as well as subsampling of the

data (Appendix Figs S6 and S7). The factors were largely orthogo-

nal, capturing independent sources of variation (Appendix Fig S6).

Among these, Factors 1 and 2 were active in most assays, indicat-

ing broad roles in multiple molecular layers (Fig 2B). In contrast,

other factors such as Factor 3 or Factor 5 were specific to two

data modalities, and Factor 4 was active in a single data modality

only. Cumulatively, the 10 factors explained 41% of variation in

the drug response data, 38% in the mRNA data, 24% in the DNA

methylation data and 24% in the mutation data (Fig 2C).

We also trained MOFA when excluding individual data modali-

ties to probe their redundancy, finding that factors that were active
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in multiple data modalities could still be recovered, while the

identification of others was dependent on a specific data type

(Appendix Fig S8). In comparison with GFA (Leppäaho & Kaski,

2017) and iCluster (Mo et al, 2013), MOFA was more consistent in

identifying factors across multiple model instances (Appendix

Fig S9).

MOFA identifies important clinical markers in CLL and reveals an
underappreciated axis of variation attributed to oxidative stress

As part of the downstream pipeline, MOFA provides different strate-

gies to use the loadings of the features on each factor to identify

their aetiology (Fig 1B). For example, based on the top weights in

the mutation data, Factor 1 was aligned with the somatic mutation

status of the immunoglobulin heavy-chain variable region gene

(IGHV), while Factor 2 aligned with trisomy of chromosome 12

(Fig 2D and E). Thus, MOFA correctly identified two major axes of

molecular disease heterogeneity and aligned them with two of the

most important clinical markers in CLL (Zenz et al, 2010; Fabbri &

Dalla-Favera, 2016; Fig 2D and E).

IGHV status, the marker associated with Factor 1, is a surrogate

of the differentiation state of the tumour’s cell of origin and the

level of activation of the B-cell receptor. While in clinical practice

this axis of variation is generally considered binary (Fabbri &

Dalla-Favera, 2016), our results indicate a more complex

substructure (Fig 3A, Appendix Fig S10). At the current resolution,

this factor was consistent with three subgroup models such as

proposed by Oakes et al (2016) and Queiros et al (2015)

(Appendix Fig S11), although there is suggestive evidence for an

underlying continuum. MOFA connected this factor to multiple

molecular layers (Appendix Figs S12 and S13), including changes

in the expression of genes previously linked to IGHV status

(Vasconcelos et al, 2005; Maloum et al, 2009; Trojani et al, 2012;

Morabito et al, 2015; Plesingerova et al, 2017; Fig 3B and C) and

with drugs that target kinases in or downstream of the B-cell

receptor pathway (Fig 3D and E).

Despite their clinical importance, the IGHV and the trisomy

12 factors accounted for < 20% of the variance explained by

MOFA, suggesting the existence of other sources of heterogeneity.

One example is Factor 5, which was active in the mRNA and

drug response data. Analysis of the weights in the mRNA

revealed that this factor tagged a set of genes enriched for oxida-

tive stress and senescence pathways (Figs 2F and EV2A), with

the top weights corresponding to heat-shock proteins (HSPs;

Fig EV2B and C), genes that are essential for protein folding and

are up-regulated upon stress conditions (Srivastava, 2002;

Åkerfelt et al, 2010). Although genes in HSP pathways are up-

regulated in some cancers and have known roles in tumour cell

survival (Trachootham et al, 2009), thus far this gene family has

received little attention in the context of CLL. Consistent with
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Figure 1. Multi-Omics Factor Analysis: model overview and downstream analyses.

A Model overview: MOFA takes M data matrices as input (Y1,. . ., YM), one or more from each data modality, with co-occurrent samples but features that are not
necessarily related and that can differ in numbers. MOFA decomposes these matrices into a matrix of factors (Z) for each sample and M weight matrices, one for each
data modality (W1,.., WM). White cells in the weight matrices correspond to zeros, i.e. inactive features, whereas the cross symbol in the data matrices denotes
missing values.

B The fitted MOFA model can be queried for different downstream analyses, including (i) variance decomposition, assessing the proportion of variance explained by
each factor in each data modality, (ii) semi-automated factor annotation based on the inspection of loadings and gene set enrichment analysis, (iii) visualization of
the samples in the factor space and (iv) imputation of missing values, including missing assays.
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this annotation based on the mRNA data, we observed that the

drugs with the strongest weights on Factor 5 were associated with

response to oxidative stress, such as target reactive oxygen species

(ROS), DNA damage response and apoptosis (Fig EV2D and E).

Factor 4 captured 9% of variation in the mRNA data, and gene

set enrichment analysis on the mRNA loadings suggested aetiologies

related to immune response pathways and T-cell receptor signalling

(Fig 2F), likely due to differences in cell type composition between

samples: While the samples are comprised mainly of B cells, Factor

4 revealed a possible contamination with other cell types such as T

cells and monocytes (Appendix Fig S14). Factor 3 explained 11% of

variation in the drug response data capturing differences in the

samples’ general level of drug sensitivity (Geeleher et al, 2016;

Appendix Fig S15).

MOFA identifies outlier samples and accurately imputes
missing values

Next, we explored the relationship between inferred factors and

clinical annotations, which can be missing, mis-annotated or inaccu-

rate, since they are frequently based on single markers or imperfect

surrogates (Westra et al, 2011). Since IGHV status is the major

biomarker impacting on clinical care, we assessed the consistency

between the inferred continuous Factor 1 and this binary marker.

For 176 out of 200 patients, the MOFA factor was in agreement with

the clinical IGHV status, and MOFA further allowed for classifying

12 patients that lacked clinically measured IGHV status (Fig EV3A

and B). Interestingly, MOFA assigned 12 patients to a different

group than suggested by their clinical IGHV label. Upon inspection
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Figure 2. Application of MOFA to a study of chronic lymphocytic leukaemia.

A Study overview and data types. Data modalities are shown in different rows (D = number of features) and samples (N) in columns, with missing samples shown
using grey bars.

B, C (B) Proportion of total variance explained (R2) by individual factors for each assay and (C) cumulative proportion of total variance explained.
D Absolute loadings of the top features of Factors 1 and 2 in the Mutations data.
E Visualization of samples using Factors 1 and 2. The colours denote the IGHV status of the tumours; symbol shape and colour tone indicate chromosome 12 trisomy

status.
F Number of enriched Reactome gene sets per factor based on the gene expression data (FDR < 1%). The colours denote categories of related pathways defined as in

Appendix Table S2.
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of the underlying molecular data, nine of these cases showed inter-

mediate molecular signatures, suggesting that they are borderline

cases that are not well captured by the binary classification; the

remaining three cases were clearly discordant (Fig EV3C and D).

Additional independent drug response assays as well as whole

exome sequencing data confirmed that these cases are outliers

within their IGHV group (Fig EV3E and F).

As incomplete data is a common problem in studies that combine

multiple high-throughput assays, we assessed the ability of MOFA

to fill in missing values within assays as well as when entire data

modalities are missing for some of the samples. For both imputation

tasks, MOFA yielded more accurate predictions than other estab-

lished imputation strategies, including imputation by feature-wise

mean, SoftImpute (Mazumder et al, 2010) and a k-nearest neigh-

bour method (Troyanskaya et al, 2001; Fig EV4, Appendix Fig S16),

and MOFA was more robust than GFA, especially in the case of

missing assays (Appendix Fig S17).

Latent factors inferred by MOFA are predictive of
clinical outcomes

Finally, we explored the utility of the latent factors inferred by

MOFA as predictors in models of clinical outcomes. Three of the

10 factors identified by MOFA were significantly associated with

time to next treatment (Cox regression, Materials and Methods,

FDR < 1%, Fig 4A and B): Factor 1, related to the B-cell of origin,

Fa
ct

or
 1

−
1.

5
−

0.
5

0.
5

1.
5

Factor clusters

LZ IZ HZ

mRNA

Drug
response

Concentration [μΜ]

AZD7762 dasatinib

0 10 20 30 40 0 10 20 30 40
0.00

0.25

0.50

0.75

1.00
vi

ab
ili

ty

LZ IZ HZ

NU7441
TAE684

thapsigargin
MK−1775

ibrutinib
SCH 900776

spebrutinib
idelalisib
duvelisib

PRT062607 HCl
tamatinib

PF 477736
AZD7762
AT13387
dasatinib

0.0 0.2 0.4 0.6
Absolute loading on Factor 1

2
4
6
8
10
12
14

ADAM29
WNT9A
MAPK4
SPG20
NETO1
BCL7A
NPTX1

PSD3
RBMS3

PPP1R9A
KANK2

CRY1
PLD1

L3MBTL4
LDOC1

LPL
ZNF471

SOWAHC
SEPT10
ZNF667

0.0 0.3 0.6 0.9

ZNF667
SEPT10
SOWAHC
ZNF471
LPL
LDOC1
L3MBTL4
PLD1
CRY1
KANK2
PPP1R9A
RBMS3
PSD3
NPTX1
BCL7A
NETO1
SPG20
MAPK4
WNT9A
ADAM29

Factor 1
Clusters

Samples

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

Drug
 Categories

BCR pathway
CHK
HSP90
other

known IGHV-association normalized gene expression

A

B C

ED
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A Beeswarm plot with Factor 1 values for each sample with colours corresponding to three groups found by 3-means clustering with low factor values (LZ),
intermediate factor values (IZ) and high factor values (HZ).

B Absolute loadings for the genes with the largest absolute weights in the mRNA data. Plus or minus symbols on the right indicate the sign of the loading. Genes
highlighted in orange were previously described as prognostic markers in CLL and associated with IGHV status (Vasconcelos et al, 2005; Maloum et al, 2009; Trojani
et al, 2012; Morabito et al, 2015; Plesingerova et al, 2017).

C Heatmap of gene expression values for genes with the largest weights as in (B).
D Absolute loadings of the drugs with the largest weights, annotated by target category.
E Drug response curves for two of the drugs with top weights, stratified by the clusters as in (A).
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and two Factors, 7 and 8, associated with chemo-immunotherapy

treatment prior to sample collection (P < 0.01, t-test). In particular,

Factor 7 captures del17p and TP53 mutations as well as differences

in methylation patterns of oncogenes (Garg et al, 2014; Fluhr et al,

2016; Appendix Fig S18), while Factor 8 is associated with WNT

signalling (Appendix Fig S19).

We also assessed the prediction performance when combining

the 10 MOFA factors in a multivariate Cox regression model.

Notably, this model yielded higher prediction accuracy than models

using components derived from conventional PCA (Fig 4C), individ-

ual molecular features (Appendix Fig S20) or MOFA factors derived

from only a subset of the available data modalities (Appendix Fig

S8B and D; assessed using cross-validation, Materials and Methods).

The predictive value of MOFA factors was similar to clinical covari-

ates (such as lymphocyte doubling time) that are used to guide

treatment decisions (Appendix Fig S21).
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Figure 4. Relationship between clinical data and latent factors.

A Association of MOFA factors to time to next treatment using a univariate Cox regression with N = 174 samples (96 of which are uncensored cases) and P-values based
on the Wald statistic. Error bars denote 95% confidence intervals. Numbers on the right denote P-values for each predictor.

B Kaplan–Meier plots measuring time to next treatment for the individual MOFA factors. The cut-points on each factor were chosen using maximally selected rank
statistics (Hothorn & Lausen, 2003), and P-values were calculated using a log-rank test on the resulting groups.

C Prediction accuracy of time to treatment for N = 174 patients using multivariate Cox regression trained using the 10 factors derived using MOFA, as well using the
first 10 components obtained from PCA applied to the corresponding single data modalities and the full data set (assessed on hold-out data). Shown are average
values of Harrell’s C-index from fivefold cross-validation. Error bars denote standard error of the mean.
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In an application to single cell data MOFA reveals coordinated
changes between the transcriptome and the epigenome along a
differentiation trajectory

As multi-omics approaches are also beginning to emerge in single-

cell biology (Macaulay et al, 2015; Angermueller et al, 2016; Guo

et al, 2017; Clark et al, 2018; Colomé-Tatché & Theis, 2018), we

investigated the potential of MOFA to disentangle the heterogeneity

observed in such studies. We applied MOFA to a data set of 87

mouse embryonic stem cells (mESCs), comprising of 16 cells

cultured in “2i” media, which induces a naive pluripotency state,

and 71 serum-grown cells, which commits cells to a primed

pluripotency state poised for cellular differentiation (Angermueller

et al, 2016). All cells were profiled using single-cell methylation and

transcriptome sequencing, which provides parallel information of

these two molecular layers (Fig 5A). We applied MOFA to disentan-

gle the observed heterogeneity in the transcriptome and the CpG

methylation at three different genomic contexts: promoters, CpG

islands and enhancers.

MOFA identified three major factors driving cell–cell heterogene-

ity (minimum explained variance of 2%, Materials and Methods):

while Factor 1 is shared across all data modalities (7% variance

explained in the RNA data and between 53 and 72% in the methyla-

tion data sets), Factors 2 and 3 are active primarily in the RNA data

Culture

Met CpG Islands
D=5000

Met Promoters
D=5000

Met Enhancers
D=5000

RNA expression
D=5000

Samples (N=87) 0.0 0.3 0.6

0.0

0.2

0.4

0.6

R2

Factor
1 2 3

R2

A B C

D E

−1

0

1

−4 −2 0 2
Factor 1

F
ac

to
r 

2

Lo
ad

in
g 

F
ac

to
r 

1
Lo

ad
in

g 
F

ac
to

r 
2

Klf4Tbx3
Tex19.1

Tcl1Esrrb
Jam2

Fbxo15 Morc1 Zfp42

0.00

0.50

1.00

Rank position

Krt19Anxa3
Tagln

Ahnak
Anxa5Cald1 Krt8

0.00

0.50

1.00

Serum2i

N=81

N=83

N=83

N=83

Figure 5. Application of MOFA to a single-cell multi-omics study.

A Study overview and data types. Data modalities are shown in different rows (D = number of features) and samples (N) in columns, with missing samples shown
using grey bars.

B, C (B) Fraction of the variance explained (R2) by individual factors for each data modality and (C) cumulative proportion of variance explained.
D Absolute loadings of Factor 1 (bottom) and Factor 2 (top) in the mRNA data. Labelled genes in Factor 1 are known markers of pluripotency (Mohammed et al, 2017)
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(Fig 5B and C). Gene loadings revealed that Factor 1 captured the

cells’ transition from naı̈ve to primed pluripotent states, pinpointing

pluripotency markers such as Rex1/Zpf42, Tbx3, Fbxo15 and Essrb

(Mohammed et al, 2017; Figs 5D and EV5A). MOFA connected

these transcriptomic changes to coordinated changes in the genome-

wide DNA methylation rate across all genomic contexts (Fig EV5B),

as previously described both in vitro (Angermueller et al, 2016) and

in vivo (Auclair et al, 2014). Factor 2 captured a second axis of dif-

ferentiation from the primed pluripotency state to a differentiated

state with highest RNA loadings for known differentiation markers

such as keratins and annexins (Fuchs, 1988; Figs 5D and EV5C).

Finally, Factor 3 captured the cellular detection rate, a known tech-

nical covariate associated with cell quality and mRNA content

(Finak et al, 2015; Appendix Fig S22).

Jointly, Factors 1 and 2 captured the entire differentiation trajec-

tory from naive pluripotent cells via primed pluripotent cells to dif-

ferentiated cells (Fig 5E), illustrating the importance of learning

continuous latent factors rather than discrete sample assignments.

Multi-omics clustering algorithms such as SNF (Wang et al, 2014)

or iCluster (Shen et al, 2009; Mo et al, 2013) were only capable of

distinguishing cellular subpopulations, but not of recovering contin-

uous processes such as cell differentiation (Appendix Fig S23).

Discussion

Multi-Omics Factor Analysis (MOFA) is an unsupervised method for

decomposing the sources of heterogeneity in multi-omics data sets.

We applied MOFA to high-dimensional and incomplete multi-omics

profiles collected from patient-derived tumour samples and to a

single-cell study of mESCs.

First, in the CLL study, we demonstrated that our method is able

to identify major drivers of variation in a clinically and biologically

heterogeneous disease. Most notably, our model identified previ-

ously known clinical markers as well as novel putative molecular

drivers of heterogeneity, some of which were predictive of clinical

outcome. Additionally, since MOFA factors capture variations of

multiple features and data modalities, inferred factors can help to

mitigate assay noise, thereby increasing the sensitivity for identify-

ing molecular signatures compared to using individual features or

assays. Our results also demonstrate that MOFA can leverage infor-

mation from multiple omics layers to accurately impute missing

values from sparse profiling data sets and guide the detection of

outliers, e.g. due to mislabelled samples or sample swaps.

In a second application, we used MOFA for the analysis of single-

cell multi-omics data. This use case illustrates the advantage of

learning continuous factors, rather than discrete groups, enabling

MOFA to recover a differentiation trajectory by combining informa-

tion from two sparsely profiled molecular layers.

While applications of factor models for integrating different data

types were reported previously (Lanckriet et al, 2004; Shen et al,

2009; Akavia et al, 2010; Mo et al, 2013), MOFA provides unique

features (Materials and Methods, Appendix Table S3) that enable

the interpretable reconstruction of the underlying factors and

accommodating different data types as well as different patterns of

missing data. MOFA is available as open-source software and

includes semi-automated analysis pipelines allowing for in-depth

characterizations of inferred factors. Taken together, this will foster

the accessibility of interpretable factor models for a wide range of

multi-omics studies.

Although we have addressed important challenges for multi-

omics applications, MOFA is not free of limitations. The model is

linear, which means that it can miss strongly non-linear relation-

ships between features within and across assays (Buettner & Theis,

2012). Non-linear extensions of MOFA may address this, although,

as with any models in high-dimensional spaces, there will be trade-

offs between model complexity, computational efficiency and inter-

pretability (preprint: Damianou et al, 2016). A related area of work

is to incorporate prior information on the relationships between

individual features. For example, future extensions could make use

of pathway databases within each omic type (Buettner et al, 2017)

or priors that reflect relationships given by the “dogma of molecular

biology”. In addition, new likelihoods and noise models could

expand the value of MOFA in data sets with specific statistical prop-

erties that hamper the application of traditional statistical methods,

including zero-inflated data (i.e. scRNA-Seq; Pierson & Yau, 2015)

or binomial distributed data (i.e. splicing events; Huang & Sangui-

netti, 2017). Finally, while here we focus our attention on the point

estimates of inferred factors, future extensions could attempt a more

comprehensive Bayesian treatment that propagates evidence

strength and estimation uncertainties to diagnostics and down-

stream analyses.

Materials and Methods

Multi-Omics Factor Analysis model

Starting from M data matrices Y1,..,YM of dimensions N × Dm,

where N is the number of samples and Dm the number of features in

data matrix m, MOFA decomposes these matrices as

Ym ¼ ZWmT þ em m ¼ 1; . . .;M: (1)

Here, Z denotes the factor matrix (common for all data matrices)

and Wm denotes the weight matrices for each data matrix m (also

referred to as view m in the following). em denotes the view-

specific residual noise term, with its form depending on the speci-

fics of the data type (see Noise model).

The model is formulated in a probabilistic Bayesian framework,

where we place prior distributions on all unobserved variables of

the model (see plate diagram in Appendix Fig S24), i.e. the factors

Z, the weight matrices Wm and the parameters of the residual noise

term. In particular, we use a standard normal prior for the factors Z

and employ sparsity priors for the weight matrices (see next

section).

Model regularization

An appropriate regularization of the weight matrices is essential for

the model’s ability to disentangle variation across data sets and to

yield interpretable factors. MOFA uses a two-level regularization:

the first level encourages view- and factor-wise sparsity, thereby

allowing to directly identify which factor is active in which view.

The second level encourages feature-wise sparsity, thereby typically

resulting in a small number of features with active weights. To
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encode these sparsity levels, we combine an Automatic Relevance

Determination (ARD) prior for the first type of the sparsity with a

spike-and-slab prior for the second. For amenable inference, we

model the spike-and-slab prior by parameterizing the weights as a

product of a Bernoulli distributed random variable and a normally

distributed random variable: W ¼ ScW , where smdk � Ber ðhmk Þ andcWm
dk � Nð0; 1=amk Þ. To automatically learn the appropriate level of

regularization for each factor and view, we use uninformative

conjugate prior on amk , which controls the strength of factor k in

view m, and on hmk , which determines the feature-wise sparsity level

of factor k in view m (see Appendix Supplementary Methods,

Section 2 for details).

Noise model

MOFA supports the combination of different noise models to inte-

grate diverse data types, including continuous, binary and count

data. A standard noise model for continuous data is the Gaussian

noise model assuming iid heteroscedastic residuals em, i.e.

emnd � Nð0; 1=smd Þ, with Gamma prior on the precision parameters smd .
MOFA further supports noise models for binary and count data that

are not appropriately modelled using a Gaussian likelihood. In the

current version, MOFA models count data using a Poisson model

and binary data by using a Bernoulli model. Here, the model likeli-

hood is given by ymnd � Poi k Zn:w
T
d:

� �� �
and ymnd � Ber r Zn:w

T
d:

� �� �
,

respectively, where kðxÞ ¼ logð1 þ exÞ and r denotes the logistic

function rðxÞ ¼ ð1 þ e�xÞ�1.

Parameter inference

For scalability, we make use of a variational Bayesian framework,

which is essentially a mean field approximation for approximate

inference (Blei et al, 2017). The key idea is to approximate the

intractable posterior distribution using a simpler class of distribu-

tions by minimizing the Kullback–Leibler divergence to the exact

posterior, or equivalently maximizing the evidence lower bound

(ELBO). Convergence of the algorithm can be monitored based on

the ELBO. An overview of variational inference and details on the

specific implementation for MOFA can be found in Appendix Supple-

mentary Methods, Section 3. To enable an efficient inference for

non-Gaussian likelihoods, we employ variational lower bounds on

the likelihood (Jaakkola & Jordan, 2000; Seeger & Bouchard, 2012;

see Appendix Supplementary Methods, Section 4).

Model training and selection

An important part of the training is the determination of the number

of factors. Factors are automatically inactivated by the ARD prior of

the model as described in Model regularization. In practice, factors

are pruned during training using a minimum fraction of variance

explained threshold that needs to be specified by the user. Alterna-

tively, the user can fix the number of factors and the minimum vari-

ance criterion is ignored. In the analyses presented, we initialized

the models with K = 25 factors and they were pruned during train-

ing using a threshold of variance explained of 2%. For details on the

implementation as well as practical considerations for training and

choice of the threshold parameter, refer to Appendix Supplementary

Methods, Section 5.

While the inferred factors are robust under different initializa-

tions (e.g. Appendix Fig S6C and D), the optimization landscape is

non-convex, and hence, the algorithm is not guaranteed to converge

to a global optimum. Results presented here are based on 10–25

random restarts, selecting the model with the highest ELBO (e.g.

Appendix Fig S6B).

Downstream analysis for factor interpretation and annotation

As part of MOFA, we provide the R package MOFAtools, which

provides a semi-automated pipeline for the characterization and

interpretation of the latent factors. In all downstream analyses, we

use the expectations of the model variables under the posterior

distributions inferred by the variational framework.

The first step, after a model has been trained, is to disentangle

the variation explained by each factor in each view. To this end, we

compute the fraction of the variance explained (R2) by factor k in

view m as

R2
m;k ¼ 1�

X
n;d

ymnd � znkw
m
kd � lmd

� �2
=

X
n;d

ymnd � lmd

� �2

as well as the fraction of variance explained per view taking into

account all factors

R2
m ¼ 1�

X
n;d

ymnd �
X

k
znkw

m
kd � lmd

� �2
=

X
n;d

ymnd � lmd

� �2

Here, lmd denotes the feature-wise mean. Subsequently, each

factor is characterized by three complementary analyses:

1 Ordination of the samples in factor space: Visualize a low-

dimensional representation of the main drivers of sample

heterogeneity.

2 Inspection of top features with largest weight: The loadings can

give insights into the biological process underlying the hetero-

geneity captured by a latent factor. Due to scale differences

between assays, the weights of different views are not directly

comparable. For simplicity, we scale each weight vector by its

absolute value.

3 Feature set enrichment analysis: Combine the signal from func-

tionally related sets of features (e.g. gene sets) to derive a

feature set-based annotation. By default, we use a parametric

t-test comparing the means of the foreground set (the weights

of features that belong to a set G) and the background set (the

weights of features that do not belong to the set G), similar to

the approach described in Frost et al (2015).

Relationship to existing methods

MOFA builds upon the statistical framework of group Factor

Analysis (Virtanen et al, 2012; Khan et al, 2014; Klami et al, 2015;

Bunte et al, 2016; Zhao et al, 2016; Leppäaho & Kaski, 2017) and is

in part also related to the iCluster methods (Shen et al, 2009; Mo

et al, 2013) as shown in Appendix Table S3. Here, we describe these

connections in further detail.

iCluster

In contrast to MOFA, iCluster uses in each view the same extent of

regularization for all factors, which may be sufficient for the

purpose of clustering (the primary application of iCluster); however,
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it results in a reduced ability for distinguishing factors that drive

variation in distinct subsets of views (Appendix Fig S5). Addition-

ally, unlike MOFA and GFA, iCluster does not handle missing values

and is computationally demanding (Fig EV1), as it requires re-fitting

the model for a large range of different penalty parameters and

choices of the model dimension.

Group Factor Analysis

While the underlying model of MOFA is closely connected to the

most recent GFA implementation (Leppäaho & Kaski, 2017), GFA

is restricted to Gaussian observation noise. In terms of the algo-

rithmic implementation, MOFA uses an additional “burn-in period”

during training during which the sparsity constraints are deacti-

vated to avoid early splitting of factors and actively drops factors

below a predefined variance threshold (see Model training and

selection). In contrast, GFA directly uses sparsity constraints

throughout training and also maintains factors that have near-zero

relevance. In terms of inference, MOFA is implemented using a

variational approximate Bayesian inference, whereas GFA is based

on a Gibbs sampler. In terms of computational scalability

(Fig EV1), both methods are linear in the model’s parameters,

although GFA is computationally more expensive in absolute

terms. This difference is particularly pronounced for data sets with

missing data. This, together with the inability to deactivate factors

during inference (Appendix Fig S4), renders GFA considerably

slower in applications to real data.

Details on the simulation studies

Model validation

To validate MOFA, we simulated data from the generative model

for a varying number of views (M = 1,3,. . .,21), features

(D = 100,500,. . .,10,000), factors (K = 5,10,. . .,60), missing values

(from 0 to 90%) as well as for non-Gaussian likelihoods (Poisson,

Bernoulli; see Appendix Table S1 for simulation parameters). We

assessed the ability of MOFA to recover the true simulated number

of factors in the different settings, where we considered 10 repeat

experiments for every configuration. All trials were started with a

high number of factors (K = 100), and inactive factors were pruned

as described in Model training and selection.

Model comparison

To compare MOFA with to GFA, we simulated data from the

underlying generative model with Ktrue = 10 factors, M = 3 views,

N = 100 samples, D = 5,000 features each and 5% missing values

(missing at random). For each of the three views, we used a dif-

ferent likelihood model: continuous data were simulated with a

Gaussian distribution, binary data with a Bernoulli distribution

and count data with a Poisson distribution. Except for the non-

Gaussian likelihood extension, both methods share the same

underlying generative model, thus allowing for a meaningful

comparison. We fit ten realizations of the MOFA and GFA models

with Kinitial = 20 factors and let the method determine the most

likely number factors. To assess scalability, we considered the

same base parameter settings, varying one of the simulation

parameters at a time (number of factors K, number of features D,

number of samples N and number of views M, all Gaussian). To

assess the ability to reconstruct factor activity patterns, we

simulated data from the generative model for Ktrue = 10 and

Ktrue = 15 factors (M, N, D as before, no missing values, only

Gaussian views), where factors were set to either active or inactive

in a specific view by sampling the parameter amk from {1,103}.

Appendix Table S1 shows in more detail the simulation parameters

used in each setting.

Details on the CLL analysis

Data processing

The data were taken from (Dietrich et al, 2018), where details on

the data generation and processing can be found. Briefly, this data

set consists of somatic mutations (combination of targeted and

whole exome sequencing), RNA expression (RNA-Seq), DNA methy-

lation (Illumina arrays) and ex vivo drug response screens (ATP-

based CellTiter-Glo assay). For the training of MOFA, we included

62 drug response measurements (excluding NSC 74859 and borte-

zomib due to bad quality) at five concentrations each (D = 310)

with a threshold at 1.1 to remove outliers. Mutations were consid-

ered if present in at least three samples (D = 69). Low counts from

RNA-Seq data were filtered out and the data were normalized using

the estimateSizeFactors and varianceStabilizingTransformation func-

tion of DESeq2 (Love et al, 2014). For training, we considered the

top D = 5,000 most variable mRNAs after exclusion of genes from

the Y chromosome. Methylation data were transformed to M-values,

and we extracted the top 1% most variable CpG sites excluding sex

chromosomes (D = 4,248). We included patients diagnosed with

CLL and having data in at least two views into the MOFA model

leading to a total of N = 200 samples.

Model training and selection

We trained MOFA using 25 random initializations with a variance

threshold of 2% and selected the model with the best fit for down-

stream analysis (see Model training and selection).

Gene set enrichment analysis

Gene set enrichment analysis was performed based on Reactome

gene sets (Fabregat et al, 2015) as described above. Resulting P-

values were adjusted for multiple testing for each factor using the

Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995).

Significant enrichments were at a false discovery rate of 1%.

Imputation

To compare imputation performance, we trained MOFA on the

subset of samples with all measurements (N = 121) and masked at

random either single values or all measurements for randomly

selected samples in the drug response. After model training, the

masked values were imputed directly from the model equation (1)

and the accuracy was assessed in terms of mean squared error on

the true (masked) values. For both settings, we fixed the number of

factors in MOFA to K = 10. To investigate the dependence on K for

imputation and to compare MOFA to GFA, we re-ran the same

masking experiments varying K = 1,. . .,20 (Appendix Fig S17).

Survival analysis

Associations between the inferred factors and clinical covariates

were assessed using the patients’ time to next treatment as
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response variable in a Cox model (N = 174 samples with treatment

information, 96 of which are uncensored cases). For univariate

association tests (as shown in Fig 4A, Appendix Fig S21), we

scaled all predictors to ensure comparability of the hazard ratios

and we rotated factors, which are rotational invariant, such that

their hazard ratio is greater or equal to 1. To investigate the

predictive power of different data sets, we used a multivariate Cox

model and compared Harrell’s C-index of predictions in a stratified

fivefold cross-validation scheme. As predictors, we included the

top 10 principal components calculated on the data for each single

view, a concatenated data set (“all”) as well as the 10 MOFA

factors. Missing values in a view were set to the feature-wise

mean. In a second set of models, we used the complete set of all

features in a view with a ridge penalty in the Cox model as imple-

mented in the R package glmnet. For the Kaplan–Meier plots, an

optimal cut-point on each factor was determined to define the two

groups using the maximally selected rank statistics as implemented

in the R package survminer with P-values based on a log-rank test

between the resulting groups.

Details on the scMT analysis

The data were obtained from Angermueller et al (2016), where

details on the data generation and pre-processing can be found.

Briefly for each CpG site, we calculated a binary methylation rate

from the ratio of methylated read counts to total read counts. RNA

expression data were normalized using Lun et al (2016). To fit

MOFA, we considered the top 5,000 most variable genes with a

maximum dropout of 90% and the top 5,000 most variable CpG

sites with a minimum coverage of 10% across cells. Model selection

was performed as described for the CLL data, and factors were inac-

tivated below a minimum explained variance of 2%. For the cluster-

ing analysis using SNF and iCluster, the optimal number of clusters

was selected using the BIC criterion.

Data and software availability

• The CLL data were obtained from Dietrich et al (2018) and

are available at the European Genome–Phenome Archive under

accession EGAS00001001746 and data tables as R objects can be

downloaded from http://pace.embl.de/. The single-cell data were

obtained from Angermueller et al (2016) and are available in the

Gene Expression Omnibus under accession GSE74535. All data

used are contained within the MOFA vignettes and can be down-

loaded as from https://github.com/bioFAM/MOFA.

• An open-source implementation of MOFA in R and Python is

available from https://github.com/bioFAM/MOFA. Code to repro-

duce all the analyses presented is available at https://github.com/

bioFAM/MOFA_analysis.

Expanded View for this article is available online.
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Abstract

Background: Lung neuroendocrine neoplasms (LNENs) are rare solid cancers, with most genomic studies including a
limited number of samples. Recently, generating the first multi-omic dataset for atypical pulmonary carcinoids and the first
methylation dataset for large-cell neuroendocrine carcinomas led us to the discovery of clinically relevant molecular
groups, as well as a new entity of pulmonary carcinoids (supra-carcinoids). Results: To promote the integration of LNENs
molecular data, we provide here detailed information on data generation and quality control for whole-genome/exome
sequencing, RNA sequencing, and EPIC 850K methylation arrays for a total of 84 patients with LNENs. We integrate the
transcriptomic data with other previously published data and generate the first comprehensive molecular map of LNENs
using the Uniform Manifold Approximation and Projection (UMAP) dimension reduction technique. We show that this map
captures the main biological findings of previous studies and can be used as reference to integrate datasets for which RNA
sequencing is available. The generated map can be interactively explored and interrogated on the UCSC TumorMap portal
(https://tumormap.ucsc.edu/?p=RCG lungNENomics/LNEN). The data, source code, and compute environments used to
generate and evaluate the map as well as the raw data are available, respectively, in a Nextjournal interactive notebook
(https://nextjournal.com/rarecancersgenomics/a-molecular-map-of-lung-neuroendocrine-neoplasms/) and at the
EMBL-EBI European Genome-phenome Archive and Gene Expression Omnibus data repositories. Conclusions: We provide
data and all resources needed to integrate them with future LNENs transcriptomic studies, allowing meaningful
conclusions to be drawn that will eventually lead to a better understanding of this rare understudied disease.

Keywords: carcinoids; lung cancer; neuroendocrine neoplasms; rare cancers; genomics; Tumormap; lungNENomics project

Background

Lung neuroendocrine neoplasms (LNENs) are rare understud-
ied diseases with limited therapeutic opportunities. LNENs in-
clude poorly differentiated and highly aggressive lung neuroen-

docrine carcinomas (NECs)—i.e., small-cell lung cancer (SCLC)
and large-cell neuroendocrine carcinoma (LCNEC)—as well as
well-differentiated and less aggressive lung neuroendocrine tu-
mors (NETs), i.e., typical and atypical carcinoids (WHO classifica-
tion 2015 [1]). Over the past years several genomic studies have
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investigated the molecular characteristics of these diseases to
provide some evidence for more personalized clinical manage-
ment [2–8]. Although lung NECs and NETs are broadly consid-
ered different diseases, several recent studies have suggested
that they may share some molecular characteristics [7, 9–12].
However, owing to the rarity of these diseases, the sample sizes
of these studies individually are limited, and the integration of
independent datasets is not an easy task.

Providing a way to interactively visualize and analyze these
pan-LNEN data would be of great interest for the scientific com-
munity, not only to further explore the proposed molecular link
between lung NECs and NETs but also to integrate data from
studies including fewer samples to reach the statistical power
needed to draw meaningful conclusions.

Data Description

Recently [7], we performed the first integrative and compar-
ative genomic analysis of LNEN samples from all histological
types, based on newly sequenced data: whole-exome sequenc-
ing (WES) data (16 samples), whole-genome sequencing (WGS)
data (3 samples), RNA-sequencing (RNA-Seq) data (20 samples),
and EPIC 850K methylation data (76 samples), as well as pub-
licly available data. These data correspond to the most exten-
sive multi-omic dataset of LNENs, including the first methyla-
tion data for LCNEC and the first molecular characterization of
the rarest LNEN subtype (atypical carcinoids) [7]. This dataset,
which provides the missing pieces for a complete molecular
characterization of LNENs, has been deposited at the EMBL-
EBI European Genome-phenome Archive (EGA accession No.
EGAS00001003699). To facilitate the reuse of the data generated
for the previous publication [7], we provide here a complemen-
tary data descriptor by outlining the pre-processing and quality
control (QC) steps performed on each omic dataset available on
EGA.

Also, other studies have generated sequencing data and per-
formed a molecular characterization of LNEN samples: pul-
monary carcinoids (mostly typical carinoids) have been charac-
terized by Fernandez-Cuesta et al. [4] and Laddha et al. [8], LC-
NEC by George et al. [6], and SCLC by George et al. [5] and Peifer
et al. [2]. We therefore generate the first pan-LNEN molecular
tumor map by integrating the transcriptomic data from Alcala
et al. [7] and the other published LNEN transcriptomic data [2, 4–
6, 8]. This map provides an interactive way to explore the molec-
ular data and allows statistical interrogation, based on the UCSC
TumorMap portal [13]. The integrated transcriptomic dataset re-
sulting from these studies is available on GitHub [14].

Data quality controls

Fig. 1 provides a schematic view of the pre-processing steps and
the associated QC performed for each omic dataset generated
by Alcala and colleagues [7]. An overview of the available omics
and clinical data for each sample is provided in Supplementary
Table 1.

WES and WGS data

WES and WGS were performed, respectively, on 16 and 3 fresh-
frozen atypical carcinoids in the Cologne Centre for Genomics
and the Centre National de Recherche en Génomique Humaine.
For WES, the SeqCap EZ v2 Library capture kit from NimbleGen
(44 Mb) and the Illumina HiSeq 2000 machine (Illumina Inc., San
Diego, CA, USA) were used for the sequencing. For WGS, the Illu-

mina TruSeq DNA PCR-Free Library Preparation Kit was used for
library preparation and the HiSeqX5 platform from Illumina for
the sequencing as described in [7]. The sequencing reads from
the 16 atypical carcinoids’ whole exomes and the 3 carcinoids’
whole genomes were processed using the in-house Nextflow [15]
workflow available at the IARCbioinfo/alignment-nf [16] GitHub
repository, revision No. 9092214665. The pipeline consists in 3
steps: mapping reads to the reference genome (GRCh37), mark-
ing duplicates, and sorting reads using bwa v0.7.12-r1044 (BWA,
RRID:SCR 010910) [17], samblaster v0.1.22 (samblaster, RRID:SC
R 000468) [18], and sambamba v0.5.9 [19], respectively. For WES
samples, local realignment using ABRA v0.97b (ABRA, RRID:SC
R 003277) [20] was then run.

The QCs of the WES and WGS data were performed us-
ing FastQC v0.11.8 (FastQC, RRID:SCR 014583) [21] and Qual-
iMap v2.2.1 (QualiMap, RRID:SCR 001209) [22] using the in-house
Nextflow [15] workflows available at IARCbioinfo/fastqc-nf [23]
and IARCbioinfo/qualimap-nf [24] repositories, respectively, and
the results aggregated using MultiQC v1.7 (MultiQC, RRID:SCR 0
14982) [25] (Fig. 1, left panel).

Fig. 2A and B show the per base sequence quality scores (left
panels) and the per sequence mean quality scores (right panels).
Regarding the per base sequence quality scores, the majority of
the base calls were of very good quality (>28, green area, Fig. 2A
left panel) and of reasonable quality (>20, orange area, Fig. 2B
left panel) for WES and WGS data, respectively. The most fre-
quently observed sequence mean quality score was ∼30 for both
techniques, which is equivalent to an error probability of 0.1%.
Table 1 provides the general statistics associated with the WES
and WGS QCs. The observed median coverage for each sample
was above the expected coverage (30× for the WGS samples and
120× for the WES samples). Concerning the alignment quality,
all WES samples had >99% of the reads aligned and all WGS
samples had >98% of the reads aligned.

RNA-Seq data

RNA-Seq was performed on 20 fresh-frozen atypical samples.
The Illumina TruSeq RNA sample preparation Kit was used for
library preparation and the Illumina TruSeq PE Cluster Kit v3
and the Illumina TruSeq SBS Kit v3-HS kits were used on an
Illumina HiSeq 2000 sequencer. The data generated were pro-
cessed in 5 steps (Fig. 1, middle panel): (i) read trimming us-
ing Trim Galore v0.6.5 (Trim Galore, RRID:SCR 011847) [26], (ii)
read mapping to the reference genome (GRCh38, gencode ver-
sion 33 from bundle CTAT from 6 April 2020 [27]) using STAR
v.2.7.3a (STAR, RRID:SCR 015899) [28], (iii) realignment of the
reads using ABRA2 v2.22 (ABRA, RRID:SCR 003277) [29], (iv) base
quality score recalibration using GATK4 v4.0.5.1 (GATK, RRID:
SCR 001876) [30, 31], and (v) gene expression quantification us-
ing StringTie v2.1.1 (StringTie, RRID:SCR 016323) [32]. FastQC
v.0.11.9 (FastQC, RRID:SCR 014583) [21], RSeQC v3.0.1 (RSeQC,
RRID:SCR 005275) [33], and HTSeq v0.12.4 (HTSeq, RRID:SCR 0
05514) [34] were used to control the raw read quality and as-
signments, and the results aggregated using MultiQC v1.7 (Mul-
tiQC, RRID:SCR 014982) [25]. These steps were performed us-
ing our in-house Nextflow [15] pipelines available at the fol-
lowing GitHub repositories: IARCbioinfo/RNAseq-nf [35] release
v2.3, IARCbioinfo/abra-nf [36] release v3.0, IARCbioinfo/BQSR-nf
[37] release v1.1, and IARCbioinfo/RNAseq-transcript-nf [38] re-
lease v2.1.

Fig. 2C shows that the base calls, before trimming, are of
good quality because all samples have a mean per base sequence
quality score >28 (left panel) and for all samples the most fre-

https://scicrunch.org/resolver/RRID:SCR_010910
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Figure 1: Bioinformatics workflows for data processing and associated quality controls (QC; green boxes). Bioinformatics tools used for the processing of the WES/WGS
data, RNA-Seq, and methylation data are represented in the left, middle, and right panels, respectively.

Table 1: General statistics associated with the quality controls of the WES and WGS data

Sample Sequencing
Median

coverage
Total No.
reads (M) >30× (%)

Aligned
(%)

GC content
(%)

Median insert
size Duplicates (%)

LNEN002 WES 148 113.3 95.5 99.7 53.7 194 13.9
LNEN003 WES 146 110.3 95.8 99.7 53.7 194 13.4
LNEN004 WES 150 115.3 95.4 99.8 54.3 193 13.1
LNEN005 WES 135 103.4 94.7 99.8 54.0 195 12.1
LNEN006 WES 126 93.6 94.6 99.8 53.5 197 12.5
LNEN007 WES 145 116.3 94.4 99.8 54.5 195 14.8
LNEN009 WES 123 98.4 92.9 99.7 54.1 195 12.4
LNEN010 WES 138 104.1 95.0 99.7 53.3 196 13.4
LNEN011 WES 161 125.8 95.8 99.8 54.3 196 14.8
LNEN013 WES 131 99.2 94.3 99.8 53.5 193 13.0
LNEN014 WES 132 102.6 94.0 99.8 54.1 195 13.3
LNEN015 WES 148 111.3 95.7 99.6 54.1 197 10.1
LNEN016 WES 133 98.0 94.3 99.6 54.3 194 9.0
LNEN017 WES 158 116.4 95.9 99.6 54.1 192 8.9
LNEN020 WES 187 144.7 96.6 99.7 53.6 192 14.5
S00716 B WES 133 99.8 95.4 99.7 52.8 194 14.3
LNEN041 WGS 36 923.5 77.5 98.9 41.0 366 13.3
LNEN042 WGS 41 993.7 88.1 98.8 41.5 388 9.4
LNEN043 WGS 43 1033.1 89.7 99.3 41.6 392 8.8

GC: guanine-cytosine.

quently observed per sequence mean quality is >35, correspond-
ing to an error probability of 0.03% (right panel). None of the
samples presented >1% of over-represented sequences, which
ensures a proper library diversity. RSeQC was used to control the
alignment quality and to assign mapped reads to different ge-
nomic features (coding regions, introns, intergenic regions, TSS,
TES). Fig. 2D (left panel) shows that every sample had >70% of
reads uniquely mapped and the read distribution for each sam-
ple is represented in Fig. 2D (middle panel). All samples had
>75% reads mapped in coding regions (CDS-exons, 5′ and 3′ un-
translated transcribed region exons). The read counting was per-
formed at the gene level for 59,607 genes (genecode annota-
tion, release 33) using HTSeq [34]. Fig. 2D (right panel) shows the
read assignments; the percentage of assigned reads ranges from
71.3 to 87.3%. STAR, RSeQC, and HTSeq metrics for each sample
are provided in Supplementary Tables 2–4. Note that 3 samples,
LNEN008, LNEN014, and LNEN017, have a higher proportion of

reads classified as “Unmapped too short” and “Mapped to mul-
tiple loci” (Fig. 2D, left panel), reads mapped in intronic regions
(Fig. 2D, middle panel), and a lower proportion of reads assigned
by HTSeq (Fig. 2D, right panel) in comparison with the other
samples. Unexpected results concerning those samples should
thus be considered with caution.

Finally, to apply dimensionality reduction methods to the
RNA-Seq data (see below), the DESeq2 package v1.26.0 (DESeq2,
RRID:SCR 015687) [39] was used to transform the read counts ob-
tained using StringTie to variance-stabilized read counts (vst),
enabling the comparison of samples with different library sizes.
To reduce sex influence on expression profiles, the genes located
on sex chromosomes were not considered for subsequent analy-
ses. Genes located on the mitochondrial chromosome were also
not considered.

https://scicrunch.org/resolver/RRID:SCR_015687
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Figure 2: Quality control (QC) performed on each omic dataset. (A) Read QC using FastQC for WES data. (B) Read QC using FastQC for WGS data. (C) Read QC using

FastQC for RNA-Seq data. For A, B, and C, the left panels correspond to the sequence quality plots, the x-axis representing the base position in the read and the y-axis
the mean quality value; the right panels correspond to the per sequence quality score plots, the x-axis representing the mean quality score and the y-axis the number
of reads. (D) QC of the RNA-Seq data after trimming. Left: Bar plot representing the percentage of reads uniquely mapped (“Uniquely mapped”), mapped to multiple loci
(“Mapped to multiple loci” or “Mapped to too many loci” if the number of loci is >10), unmapped because the mapped reads’ proportion was too small (“Unmapped:

too short”), unmapped because of too many mismatches (“Unmapped: mismatches”), or unmapped for other reasons (“Unmapped: other”). Middle: Cumulative bar
plot representing the percentages of reads mapped, using RSeQC, at different locations in the genome (exons, introns, 5′ and 3′ untranslated transcribed region [UTR],
intergenic regions, TSS, and TES). Right: Cumulative bar plot representing the cumulative percentages associated with the different read assignments using HTSeq
(“Assigned”: reads assigned to 1 gene, “Ambiguous”: reads assigned to multiple overlapping genes, “Aligned not unique”: reads assigned to multiple non-overlapping

genes, “No Feature”: reads assigned to none of the features). (E) Left: Samples’ quality based on log median intensities. The x-axis and y-axis correspond to the median
of log2 methylated and unmethylated intensities, respectively. Right: Representation of the between-sample similarities based on the 2 first multidimensional scaling
dimensions. (F) Histogram of the median detection P-value for each sample. (G) Distribution of the β-values for each sample before and after the filtering step (left and
right panel, respectively).

Methylation data

The methylation analyses were performed on the basis of the
EPIC 850K methylation arrays and the Infinium EPIC DNA methy-
lation beadchip platform (Illumina) for 33 typical carcinoids,
23 atypical carcinoids, 20 LCNECs, and 19 technical replicates

in total. These arrays interrogate >850,000 CpGs and contain
internal control probes that can be used to assess the over-
all efficiency of the sample preparation steps. The raw inten-
sity data (IDAT files) were processed using the R package minfi
v.1.24.0 (minfi, RRID:SCR 012830) [40]. Fig. 1 (right panel) pro-
vides the packages, functions, and publication used for the data

https://scicrunch.org/resolver/RRID:SCR_012830
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processing, QC, and filtering steps as implemented in the IAR-
Cbioinfo/Methylation analysis scripts [41] GitHub repository.

Fig. 2E shows that no outliers were detected: (i) the left panel,
representing the median log2 of the methylated and unmethy-
lated intensities, indicates that all samples cluster together with
a log median intensity >11 for both channels, which supports
the absence of failed samples; (ii)in the right panel, the multidi-
mensional scaling plot shows that the samples cluster together
by histological groups. We used the depectionP function (minfi
package), which compares the DNA signal to the background sig-
nal based on the negative control probes to provide a detection
P-value per probe, lower P-value indicating reliable CpGs. Fig. 2F
represents the mean detection P-values per sample and shows
that all samples’ mean detection P-values were <0.01. To correct
for the variability identified in the control probes, a normaliza-
tion step was applied to the raw intensities using the prepro-
cessFunnorm function from minfi.

After between-array normalization, different sets of probes
that could generate artifacts were removed successively from
the methylation dataset: (i) 19,634 probes on the sex chromo-
somes, in order to identify differences related to tumors but un-
related to sex chromosomes; (ii) 41,818 cross-reactive probes,
which are probes co-hybridizing with multiple CpGs on the
genome and not only to the one for which it has been designed
[42]; (iii) 10,588 probes associated with common SNPs (present
in dbSNP build 137); (iv) 24,363 probes with multi-modal β-value
distribution; and (v) 9,697 probes having a detection P-value
>0.01 in ≥1 sample. Supplementary Table 5 lists the sets of fil-
tered probes. To assess the experimental quality of the assay, the
distributions of the β-values were analyzed. As described previ-
ously, probes with multi-modal distributions were removed at
the filtering step and overall distributions of β-values for each
sample before and after filtering were plotted (Fig. 2G). As ex-
pected, after filtering all samples showed a bimodal profile, in-
dicative of the good quality of the experiment. No experimen-
tal batch effects were identified after functional normalization
(see Supplementary Fig. 33 from [7]). Based on all the QCs per-
formed, none of the samples analyzed were identified as outlier.
However, 1 sample available on EGA (201414140007 R06C01) was
removed from the analyses because it came from a metastatic
tumor rather than the primary tumor. Sample metadata are pro-
vided in Supplementary Table 6.

Generation of an integrative molecular map

Here we have generated a pan-LNEN molecular map with the
whole-transcriptomic (RNA-Seq) data available from individual
studies of each LNEN tumor type [2, 4–8]. This dataset includes
the RNA-Seq data for a total of 51 SCLCs, 69 LCNECs, and 118
carcinoids including 40 atypical and 75 typical carcinoids. The
different data underwent the same processing steps described
above because the generation of the molecular map requires a
homogenized dataset.

Dimensionality reduction using UMAP

UMAP method
The pan-LNEN map was obtained using the Uniform Manifold
Approximation and Projection (UMAP) method [43] on the genes
with the most variable expression (genes explaining 50% of the
total variance). UMAP is a dimensionality reduction method
based on manifold learning techniques, which are adapted to
non-linear data in contrast with the commonly used principal
component analysis (PCA) method. First, it builds a topologi-

cal representation of the high-dimensional data, and second it
finds the best low-dimensional representation of this topologi-
cal structure [43]. UMAP representations were generated using
the umap function from the R package umap (v. 0.2.5.0) [44].
All the parameters were set to their default values except the
n neighbors parameter. This parameter defines the number of
neighbors considered to learn the structure of the topological
space. Varying this parameter from small to large values enables
the user to find a trade-off between local and global preserva-
tion of the space, respectively. To preserve the global structure
of the data (see “quality control of the UMAP projection” section
below), we built the pan-LNEN map setting the n neighbors pa-
rameter to 238, which corresponds to the total number of sam-
ples.

Biological interpretation of the pan-LNEN TumorMap
Fig. 3 shows the pan-LNEN map available on TumorMap [45] (see
“Reuse potential” section below), with colors representing the
main molecular subtypes. To evaluate the accuracy of the gen-
erated pan-LNEN map we first verified whether it was consis-
tent with the main biological findings from the original stud-
ies, in particular whether it represented the molecular subtypes
of LNENs previously identified, and their relationship with his-
tological types. We specifically tested whether groups of sam-
ples previously described as having discordant molecular and
histopathological features were identified in our map. To do so,
given a focal molecular subtype and 2 reference histopatholog-
ical types, we assessed whether samples from the focal molec-
ular subtype were closer to 1 of the 2 references using a 1-sided
Wilcoxon test between the Euclidean distances of samples to the
centroid of each reference type.

First, the SCLC/LCNEC-like samples [6], which are histolog-
ical SCLCs presenting the molecular profile of LCNEC, tend to
cluster with the LCNECs rather than with the SCLCs (Wilcoxon P
= 6.2 × 10−4). Similarly, the LCNEC/SCLC-like samples [6], which
are histological LCNECs having the molecular profile of SCLC,
tend to cluster with the SCLCs rather than with the LCNECs
(Wilcoxon P = 3.3 × 10−3). In 2018, George et al. showed also
that LCNEC samples can be subdivided into Type I and Type II
molecular groups [6]. We observed that the Type I and Type II
LCNECs were closer to each other than to the SCLC/SCLC-like
(Wilcoxon P = 9.9 × 10−14) and that SCLC/LCNEC-like samples
were closer to Type II than to Type I LCNECs [6] (Wilcoxon P =
3.9 × 10−3). Like the LCNECs, pulmonary carcinoids have been
subdivided into molecular groups. Alcala et al. [7] identified 3
clinically relevant molecular clusters, using a multi-omics fac-
tor analysis: Carcinoid A1, Carcinoid A2, and Carcinoid B [7]. In
the pan-LNEN map generated using UMAP, those 3 clusters are
clearly visible (Fig. 3) and, respectively, correspond to the 3 clus-
ters identified in [8] named LC1, LC3, and LC2. Also, in the study
from Alcala and colleagues [7], 2 carcinoids that clustered with
the carcinoids B (S00118 and S00089) were borderline and lo-
cated between cluster A1 and B. Similarly, an LCNEC sample and
an SCLC sample clustered with the carcinoids A1 [7]. These ob-
servations are also visible on the TumorMap representation. Fi-
nally, in the same study, a novel entity of carcinoids, named the
“supra-carcinoids,” was unveiled. These samples were charac-
terized by a morphology similar to that of pulmonary carcinoids
but with the molecular features of LCNEC samples. In the pan-
LNEN TumorMap, the supra-carcinoids also clustered with the
LCNEC samples and were molecularly closer to LCNECs than to
SCLCs (Wilcoxon P = 5 × 10−2). We also note that 1 sample from
Laddha et al. [8] LC2 cluster (SRR7646258) clusters with LCNEC.
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Supra_carcinoid

SCLC/SCLC-like

SCLC/LCNEC-like

LCNEC/TypeII

LCNEC/TypeI

LCNEC/SCLC-like

LCNEC/NA

LC3

LC2

LC1

Carcinoid-B

Carcinoid-A2

Carcinoid-A1

Figure 3: Two-dimensional projection of LNEN transcriptome data using UMAP. The representation was obtained from the TumorMap portal, using the hexagonal grid
view, each hexagonal point representing a LNEN sample. Point colors correspond to the molecular clusters defined in the previous publications.

Quality control of the UMAP projection

In any dimensional reduction technique, there is a trade-off be-
tween preserving the global structure of the data and the fine-
scale details, and UMAP has been designed to reach a better bal-
ance compared with previous methods.

On the basis of the previously published analyses of LNEN
data [2, 4–8], we expect the global structure of the data to be
composed of 6 molecular groups (SCLCs, Type I and Type II LC-
NECs, Carcinoid A1, A2, and B). For this reason, an ideal projec-
tion able to capture this large-scale variation should contain 5
dimensions. To assess the quality of the 2D representation gen-
erated by UMAP, we propose a comparative analysis between
UMAP and the traditional PCA based on the 5 first principal com-
ponents of PCA (PCA-5D) as implemented in the dudi.pca func-
tion from the ade4 R package (v1.7-15) [46]. Because UMAP is
aiming at preserving the global structure in only 2 dimensions,
we also compared it to the traditional PCA based only on the 2
first principal components (PCA-2D). We evaluated the perfor-
mance of the methods on the basis of the preservation of (i) the
samples’ neighborhood and (ii) the spatial auto-correlations.

Preservation of the samples’ neighborhood
We used the sequence difference view (SD) metric (eq. 3 from
[47]) to evaluate the preservation of the samples’ neighborhood.
This dissimilarity metric compares, for a given sample, its neigh-
borhood in the low-dimensional space with that in the original
space, taking into account that preserving the rank of a close

neighbor is more important than for a distant neighbor (see [47]
for details). SD values are positive (SD ∈ [0 ; +∞)), with small val-
ues indicating a good preservation of the sample neighborhood.
We denote by SDk the value of SD averaged across samples for
a fixed number of neighbors k; SDk gives a sense of the overall
preservation of the neighborhood at different scales: local for
low k values and global for large k values. We calculated SDk for
PCA-5D, PCA-2D, UMAP with n neighbors = 238, and UMAP with
the default value n neighbors = 15. Because we are interested in
the relative values of SDk for the different dimensionality reduc-
tion methods, and because we use PCA as a reference, for each
dimensionality reduction method X we scaled the values of SDk

using that of PCA-5D and PCA-2D:

SD
′
k,X = SDk,X − SDk,PCA−5D

SDk,PCA−2D − SDk,PCA−5D
. (1)

By definition, SD
′
k,PCA−5D = 0 and SD

′
k,PCA−2D = 1. Thus values

of SD
′
k,X close to 0 indicate that X preserves k neighborhoods

as well as PCA-5D, whereas values close to 1 indicate that X
preserves k neighborhoods worse than PCA-5D but as well as
PCA-2D, and values >1 indicate that X preserves k neighbor-
hoods worse than PCA-2D and PCA-5D. Note that SD

′
k,X can be

negative if X preserves k neighborhoods better than SDk,PCA−5D.
For the UMAP projection, we iterated the computation of SD

′
k

1,000 times because the algorithm uses a stochastic optimiza-
tion step to define the projection.
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As expected, increasing the n neighbors UMAP parameter
from 15 to 238 leads to a better preservation of the global struc-
ture, clearly visible for k > 30 (Fig. 4A; mean SD

′
k>30 = 2.855 and

1.029, respectively), while only marginally reducing the preser-
vation of the local structure for k < 30 (mean SD

′
k<30 = −0.076 and

0.124, respectively), which is approximately the size of the small-
est cluster. Globally, the SD

′
k values over all k levels are lower for

an n neighbors value of 238 than 15 (paired t-test P = 6.09 × 10−8).
With n neighbors = 238, the UMAP projection provides a clear
improvement over PCA-2D for k ∼ 135 (mean SD

′
k < 1), offering a

good trade-off for visualization in only 2 dimensions while being
able to maintain the global structure of the data, in particular
the 6 molecular groups previously identified. This observation
highlights the importance of varying the n neighbors parame-
ter according to the purpose of the projection. Some analyses
would require the local structure of the sample neighborhood to
be maintained, while others, the global structure.

Preservation of spatial auto-correlations
Under the hypothesis that close points on projections share a
similar molecular profile, spatial auto-correlations were mea-
sured according to the Moran index (MI) metric [48]. MI val-
ues range from −1 to 1, the extreme values indicating negative
(nearby locations have dissimilar gene expression) or positive
(nearby locations have similar gene expression) spatial auto-
correlation, respectively. The spatial auto-correlation of the ex-
pression of each gene helps to identify the genes contributing to
the structure of the molecular map (MI 	 1), and conversely, the
genes that are randomly distributed spatially (MI 	 0). The com-
putation of MI requires a weight matrix that determines the spa-
tial scale at which auto-correlation is assessed; we gave a weight
of 1 to the k nearest neighbors based on Euclidean distance, and
0 otherwise, so that we can control the scale at which MI is com-
puted with parameter k. The mean MI across k values was com-
puted for all gene expression features for: (i) the original space,
(ii) the PCA-5D projection, and (iii) the UMAP projection (with
n neighbors = 238). We used the implementation of MI from the
Moran.I function of R package ape (v. 5.3) [49].

To evaluate the preservation of the spatial auto-correlations,
we ranked the top N genes based on the mean MI values for these
3 cases and calculated the overlap between the lists (Fig. 4B). We
found that the PCA-5D is only slightly more conservative of the
spatial auto-correlations found in the original space than UMAP
(unilateral paired t-test P = 2.2 × 10−16). For example, for N =
1,000 (see Euler diagram inserted in Fig. 4B), 88.8% of the genes
with the highest MI overlap between the PCA-5D, UMAP, and the
original space.

Reuse potential
An interactive TumorMap

Newton and colleagues have recently developed a portal called
TumorMap [13, 50], an online tool dedicated to omics data vi-
sualization. This new type of integrated genomics portal uses
the Google Maps technology designed to facilitate visualization,
exploration, and basic statistical interrogation of high dimen-
sional and complex datasets. The pan-LNEN molecular map that
we generated in this work (Fig. 3) has been shared on the Tu-
morMap platform. Along with the molecular map, the main clin-
ical, histopathological and molecular features highlighted in the
previous studies were uploaded as attributes. The interface en-
ables users to explore and navigate through the map: zooming in
and out, coloring and filtering samples based on attributes. The

users can also create their own attributes based on pre-existing
ones by using operators such as union or intersection. In addi-
tion, multiple statistical tests are pre-implemented and avail-
able, for example: comparison of attributes without considering
the samples positions on the map, comparison of attributes con-
sidering samples’ positions on the map, and ordering attributes
on the basis of their potential to differentiate 2 groups of sam-
ples. The interactive nature of the map and the fact that its ma-
nipulation does not require computational expertise, could en-
able the generation of new hypotheses and expand the reuse
potential of the dataset.

An interactive computational notebook

In the first part of the article, we described the pre-processing
and QC steps applied on the recently published LNEN multi-
omics dataset [7] in order to facilitate its reuse. To generate
the pan-LNEN molecular map, the same pre-processing steps
were followed to homogenize independently published tran-
scriptomic data [2, 4–8]. For that purpose, reproducible pipelines,
developed in house, were used and are available for reuse to the
scientific community on GitHub [51] (see the “data description”
section). In addition, the code used to generate the molecular
map and to evaluate the quality of the dimensionality reduction
is provided as a notebook published on Nextjournal [52]. Along
with the code, the notebook provides the data and the depen-
dencies required to run the analyses performed in this paper. In-
terested researchers can thus make a copy of this publicly avail-
able notebook (called “Remix”) to reproduce our results but also
interactively modify the code and explore the influence of dif-
ferent parameters.

Integration of new samples

The homogenized read counts of the pan-LNEN data are avail-
able on GitHub [14]. Along with the available code, these data
could be used to integrate new samples for which RNA-Seq data
are available. The raw read counts of the new samples should
firstly be generated following the same processing steps de-
scribed in the section “Data quality controls” (Fig. 1, middle
panel) and integrated to the pan-LNEN read counts. We also pro-
vide in the Nextjournal notebook, the Nextflow command lines
allowing to obtain the read counts. The vst (DESeq2 [39]) should
then be applied on the combined dataset and UMAP should fi-
nally be rerun to project all samples together in a 2D space. All
together, we provide the resources to integrate additional sam-
ples into our molecular map, starting from raw sequencing read
counts.

Discussion

Genomic projects focused on rare cancers encounter the limi-
tation of availability of high-quality biological material suitable
for such studies. This translates in small series of samples usu-
ally underpowered to draw meaningful conclusions. Thus, tools
facilitating the integration of independent datasets into larger
sample series will lead to more informative studies. Recently,
the first multi-omic dataset for the understudied atypical pul-
monary carcinoids and the first methylation dataset for LCNECs
was published [7]. Here we provide a parallel description of the
pre-processing of these molecular data and provide evidence of
the good quality of the different ’omics data generated. This data
collection associated with previous datasets [2, 4–6, 8] completes
the LNEN molecular landscape and thus provides a valuable re-
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Figure 4: Quality controls performed on the UMAP projection. (A) Comparison of the samples’ neighborhood preservation for UMAP, PCA-2D, and PCA-5D dimensionality

reductions. SD
′
k values are represented as a function of the number k of nearest neighbors considered, for different dimensionality reduction methods: PCA-2D in

purple, PCA-5D in blue, UMAP with n neighbors = 238 (UMAP-nn-238) in yellow, and UMAP with the default value n neighbors = 15 (UMAP-nn-15) in green. Error bars
correspond to the means ± standard deviations computed across 1,000 replicate simulations. (B) Concordance between gene expressions’ spatial auto-correlations in
the original space, UMAP-nn-238, and PCA-5D dimensionality reductions. For each space, the genes were ranked on the basis of the spatial auto-correlations of their

expression (mean MI values). The concordance is measured as the proportion of overlap between the top N genes in the different spaces (colored lines). The yellow line
corresponds to the proportion of overlap expected under the null hypothesis (based on the expected mean of the hypergeometric law). The Euler diagram represents
the overlaps between the top 1,000 features (N = 1,000, dashed line) resulting from the 3 spaces.

source to improve the molecular characterization of LNEN tu-
mors. Notably, we show here the perfect concordance of the 3
molecular clusters of pulmonary carcinoids independently iden-
tified in [7] and [8], validating the discoveries made by these 2
studies and proving the usefulness of this integrative approach.

However, even when primary genomic data are available, bar-
riers to accessing the data still exist, often limiting reuse by the
community [53]. In particular, downloading and re-reprocessing
large raw sequencing datasets requires dedicated infrastruc-
ture and bioinformatics skills. Indeed, to minimize batch ef-
fects when integrating data from different studies, one needs
to process it in exactly the same way (e.g., with the same ver-
sions of the same software, the same reference genome, the
same annotation databases). As more and more data are gen-
erated, the previously mentioned reprocessing will become un-
tenable and replicating these efforts for each new study in each
research group represents a waste of resources. Standardiza-
tion of laboratory and computational protocols might become
a reality when large national medical genomics initiatives be-
come fully operational [54]. In the meantime there is a need for
better data sharing strategies than the traditional “supplemen-
tary spreadsheet/raw data” combination that can accelerate the
translational impact of molecular findings.

One step in this direction is the generation of so-called “tu-
mor maps,” which provide an interactive way to explore the
molecular data and allow easy statistical interrogation, includ-
ing generating new hypotheses, but also projecting data from
future studies including fewer samples [13]. This integration
method has some limitations though. A fixed reference map
could be of interest for easier biological interpretations, but the
overall sample size of the datasets used to build the pan-LNEN
map remains relatively small. Thus, the map probably does not
capture the complete molecular diversity of the LNENs, and in-
tegrating new samples will influence the map and potentially
change the clusters obtained after dimensionality reduction.

Also, if the harmonization of the new dataset to integrate is not
enough to correct for strong batch effects, the interpretation of
the projections would be erroneous. Another approach would
be to project the new samples into a fixed reference map. How-
ever, the stochastic nature of UMAP embedding and its sensitiv-
ity to parameter tuning can lead to unstable projection results;
thus this task is for now not straightforward and requires further
development [55]. In the meantime, favoring the integration of
datasets will, over the years, yield the constitution of molecular
maps that will probably be more and more accurate and more
adapted to the projection of new samples.

Conclusion

Here we provide a molecular map based on homogenized tran-
scriptomic data available for the 4 types of LNENs from 6 dif-
ferent studies. We show that this map represents well both the
local and global structure of the data and captures the main bio-
logical features previously reported. We provide a full spectrum
of data and tools to maximize reuse potential for a wide range of
users: raw sequencing reads, gene expression matrix, bioinfor-
matics pipelines, interactive computational notebooks, and an
interactive TumorMap. In particular, we indicate how one can
update the molecular map by integrating new samples starting
from raw sequencing reads. Considering the small sample sizes
of molecular studies on rare LNENs, promoting data integration
will empower more reliable statistical testing, and this map will
therefore serve as a reference in future studies.

Availability of Supporting Data and Materials
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