THE OF UTAH

Introduction

- Peptide receptor radionuclide therapy (PRRT) is used to selectively deliver radiation doses to induce apoptosis in cancer cells
- PRRT traditionally uses β emitters because the daughter radionuclides of α emitters (like ²²⁵Ac) are difficult to retain
- α particles have a higher linear energy transfer than β - particles which is more lethal to cells
- 50-230 keV/µm vs. ~0.2 keV/µm
- Advantages of nanoparticles (NPs) as a vehicle for Targeted Alpha Therapy (TAT):
- Trap metals and daughter radionuclides
- Functionalized with peptides
- Co-incorporation of ⁸⁹Zr for PET imaging
- The resulting NPs will be a theragnostic agent that can simultaneously treat and image tumors with ²²⁵Ac and ⁸⁹Zr, respectively

- Produce NPs that encapsulate both ²²⁵Ac and ⁸⁹Zr
- Coat NPs with gold to help contain the radioactive daughters of ²²⁵Ac
- Study the stability and daughter retention of ²²⁵Ac loaded NPs
- Attach an octreotide peptide to the gold-coated NPs for active targeting of Neuroendocrine Tumors.

Gold Coated Nanoparticles as a vehicle for ²²⁵Ac/⁸⁹Zr delivery for use as a Theragnostic Agent in Targeted a-Therapy George L. Diehl III (1), Viktoriya Semeykina (2), Katherine L. Gingrich (2), Parandokht Aboufazeli (2), Illya Zharov (2), and Tara Mastren (C)(1) 1) Nuclear Engineering, University of Utah; 2) Chemistry, University of Utah

Figure 3: A) Synthesis of Mesoporous Silica Nanoparticles (MSNPs)¹ B) Attachment of DTPA to MSNPs

Materials and Methods

MSNPs were made with the surfactant CTAB (Cetrimonium bromide) as the porogen² aminated with APTES (3-aminopropyl)triethoxysilane) and functionalized with DTPA (Diethylenetriaminepentaacetic acid). The DTPA was added to aid in ²²⁵Ac radiolabeling (Figure 3).

DTPA functionalized MSNPs were radiolabeled with ²²⁵Ac. Briefly, 1 mL of 2 mg/mL DTPA functionalized MSNPs were incubated with ²²⁵Ac in ammonium acetate buffer pH 5.5 for 4 hours. At different time points radiolabeling yield was assessed via radioTLC with 0.1 M citrate pH 4.5 as a running buffer.

Iron oxide nanoparticles were also investigated due to their ability to be separated rapidly via magnetic precipitation accelerating the synthesis process (Figure 4).³ Iron oxide nanoparticles were synthesized with ²²⁵Ac and/or ⁸⁹Zr and radiolabeling yield assessed via magnetic precipitation and gamma analysis of the supernatant and nanoparticles. Chemical stability of ²²⁵Ac radiolabeled iron oxide nanoparticles was investigated in PBS, HEPES, BSA, and 0.01, 0.1, and 1 M DTPA over 7 days. Gold coating of Iron oxide nanoparticles was also investigated by incubation iron oxide nanoparticles with AuCl₃ using trisodium citrate as a reducing agent.

Figure 4: Synthesis of gold coated ²²⁵Ac radiolabeled iron oxide nanoparticles

Figure 6: Left: 100 nm MSNPs Right: 100nm MSNPs coated with 25 nm of gold. Iron oxide nanoparticles were successfully

synthesized coincorporating both ⁸⁹Zr and ²²⁵Ac with greater than 90% radiochemical yield. Radiolabeled nanoparticles showed good chemical stability in PBS, HEPES pH 7 and 1% BSA. Degradation of radiolabeled nanoparticles increased with increasing concentrations of DTPA, which was expected (Figure 7). Gold coating these nanoparticles is expected to increase chemical stability.

Results

DTPA functionalized MSNPs were successfully radiolabeled with ^{225}Ac . Radiolabeling yields of 83 ± 1 % were obtained after 4 hours (Figure 5). MSNPs were successfully coated with 25 nm of gold (Figure 6)

Figure 5: ²²⁵Ac radiolabeling of DTPA functionalized MSNPs vs time

Figure 7: Chemical stability of radiolabeled iron oxide nanoparticles in PBS, 0.1M HEPES, 1% BSA, 0.01 M, 0.1 M and 1 M DTPA.

Gold coating of iron oxide nanoparticles is needed to contain the daughters of actinium. Initial attempts at gold coating have shown lots of aggregate formation and optimization is underway. Figure 8 shows a 10 nm iron oxide nanoparticles coated with 30 nm of gold is sufficient to trap > 99% of the first actinium daughter radionuclide ²²¹Fr when using the simulation code Stopping Range of Ions in Matter (SRIM), however 10 nm Fe_3O_4 nanoparticle alone traps < 5%.

8487

Conclusions

We have successfully radiolabeled both DTPA functionalized MSNPs and iron oxide nanoparticles with ²²⁵Ac and ⁸⁹Zr. Successful optimization of gold coating MSNPs has also been obtained. Iron oxide nanoparticles have shown good chemical stability in PBS, HEPES buffer and 1% BSA, however when contacted with various concentrations of DTPA degradation occurs. Gold coating these nanoparticles will increase chemical stability in addition to encapsulating the daughter radionuclides within. Next steps are to optimize gold coating of iron oxide nanoparticles and attaching octreotide peptides for targeting NET tumors.

References

¹ Yi, Zhifeng, et al. *Langmuir* 31.30 (2015): 8478-

²Trewyn, B. G et at. Accounts of chemical research 40, 846-853 (2007).

³ Cedrowska et al. Molecules, 25 (5) (2020).

⁴Ignacio-de Leon et al. MRS Online Proceedings Library Archive 1502 (2013).

Acknowledgements

We would like to thank The Education and Research Foundation for Nuclear Medicine and Molecular Imaging and the Neuroendocrine Tumor Research Foundation for funding this research. ²²⁵Ac used in this research was supplied by the U.S. Department of Energy Isotope Program, managed by the Office of Isotope R&D and Production