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ABSTRACT

Neuroendocrine neoplasms (NENs) are clinically di-
verse and incompletely characterized cancers that
are challenging to classify. MicroRNAs (miRNAs) are
small regulatory RNAs that can be used to classify
cancers. Recently, a morphology-based classifica-
tion framework for evaluating NENs from different
anatomical sites was proposed by experts, with the
requirement of improved molecular data integration.
Here, we compiled 378 miRNA expression profiles
to examine NEN classification through comprehen-
sive miRNA profiling and data mining. Following data
preprocessing, our final study cohort included 221
NEN and 114 non-NEN samples, representing 15 NEN
pathological types and 5 site-matched non-NEN con-
trol groups. Unsupervised hierarchical clustering of
miRNA expression profiles clearly separated NENs
from non-NENs. Comparative analyses showed that
miR-375 and miR-7 expression is substantially higher
in NEN cases than non-NEN controls. Correlation
analyses showed that NENs from diverse anatom-
ical sites have convergent miRNA expression pro-
grams, likely reflecting morphological and functional

similarities. Using machine learning approaches, we
identified 17 miRNAs to discriminate 15 NEN patho-
logical types and subsequently constructed a mul-
tilayer classifier, correctly identifying 217 (98%) of
221 samples and overturning one histological diag-
nosis. Through our research, we have identified com-
mon and type-specific miRNA tissue markers and
constructed an accurate miRNA-based classifier, ad-
vancing our understanding of NEN diversity.

INTRODUCTION

Classifying neuroendocrine neoplasms (NENs) is challeng-
ing due to tumor diversity, inconsistent terminology and
piecemeal molecular characterization. Currently, NENs are
broadly divided into epithelial or non-epithelial groups
based on site of origin and differences in keratin and other
gene expression; each group comprises multiple patholog-
ical types (1–3). To facilitate comparisons between NENs
from different anatomical sites, international experts re-
cently proposed a common classification framework (3).
Here, the terms ‘category’, ‘family’, ‘type’ and ‘grade’, re-
spectively, denote predominant neuroendocrine differenti-
ation, degree of differentiation, diagnostic entity and in-
herent biological activity. While morphological assessment
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and immunohistochemical staining for chromogranin A,
synaptophysin and Ki-67 proteins remain indispensable for
confirming neuroendocrine differentiation and assessing tu-
mor grade, other relevant molecular findings will be inte-
grated into this framework over time. These studies will
unravel many puzzles in NEN biology, including delineat-
ing the molecular differences between well-differentiated
neuroendocrine tumors (NETs) and poorly differentiated
neuroendocrine carcinomas (NECs) and finding regula-
tory molecules that underpin the ‘common neuroendocrine
multigene program’ (3).

MicroRNAs (miRNAs) are small (19–24 nt) regulatory
RNA molecules that can also be used to classify cancer
(4,5). miRNAs are highly informative tissue markers be-
cause of their abundance, cell-type and disease-stage speci-
ficity, and stability in fresh and archived materials (6,7).
These molecules also provide valuable mechanistic insights
into cellular processes due to computationally predictable
interactions with messenger RNAs (mRNAs) (8,9). In ad-
dition, miRNA expression profiles can be used to assess
data reliability and to prioritize mRNA targets through fur-
ther organization into miRNA cluster and sequence fam-
ily datasets (10). To date, multiple miRNA profiling stud-
ies have been performed on single or limited combinations
of NEN pathological types using different RNA isolation,
detection and analysis methods (11). Although these dif-
ferences complicate interstudy comparisons, miRNAs still
hold much promise as multi-analyte markers that better re-
flect the ‘complexity and multidimensionality of the neo-
plastic process’ than current mono-analyte markers (12,13).
Given recent advances in miRNA detection and analysis
(14), we expect that substantial biological and clinically rele-
vant insights into NEN biology will be gained through com-
prehensive miRNA profiling of multiple pathological types.

Through small RNA sequencing and data mining, we
have generated reference miRNA expression profiles for
multiple NEN pathological types and site-matched non-
NEN controls, identified candidate category- and type-
specific miRNAs, found evidence for constitutive and con-
vergent miRNA gene expression in epithelial and non-
epithelial NENs, and established a novel multilayer classi-
fier for discriminating NEN pathological types.

MATERIALS AND METHODS

Study design and clinical materials

Sequencing-based miRNA expression profiles from 378
clinical samples, comprising 239 NEN cases and 139 site-
matched non-NEN controls, were used in this study. Ex-
pression profiles were either compiled from published stud-
ies (7,15–18) (n = 149) or generated through small RNA se-
quencing (n = 229). Diagnostic histopathology, small RNA
cDNA library preparation and the source of each sample
are presented in Supplementary Table S1. The use of de-
identified clinical data and banked or archived clinical ma-
terials was approved through the Research Ethics Board
at Queen’s University, the Institutional Review Boards of
Memorial Sloan Kettering Cancer Center, The Rockefeller
University and Weill Cornell Medicine, and the Medical
Ethics Committee at the Amsterdam University Medical
Center.

RNA isolation and quantitation

Total RNA was isolated from 306 formalin-fixed paraffin-
embedded tissue blocks and 72 fresh-frozen tissue sam-
ples using the Qiagen RNeasy® Mini Kit (n = 258), TRI-
zol™ Reagent (n = 68), the Ambion RecoverAll™ Total Nu-
cleic Acid Isolation Kit (n = 28), Amsbio RNA-Bee™ Iso-
lation Reagent (n = 10) and Qiagen miRNeasy® Mini Kit
(n = 5), according to the manufacturers’ instructions or as
described (7,15–18). Total RNA concentrations were mea-
sured using the Qubit™ fluorometer (n = 258), NanoDrop®

ND-1000 spectrophotometer (n = 61) or Agilent 2100 Bio-
analyzer (n = 28). RNA isolation and quantitation data
were unavailable for 9 (2.4%) and 31 (8.2%) samples, respec-
tively.

Small RNA sequencing and sequence annotation

miRNA expression profiles for all 378 samples were gener-
ated using an established small RNA sequencing approach
and sequence annotation pipeline (10); spiked-in oligori-
bonucleotide calibrator markers enabled miRNA quanti-
tation in each sample. Small RNA cDNA libraries were
sequenced on HiSeq 2500 Illumina platforms in the Ge-
nomics Resource Center, The Rockefeller University, the
McGill University and Génome Québec Innovation Cen-
ter, and the Genomics Core, Albert Einstein College of
Medicine. FASTQ sequence files were annotated through an
automated pipeline (rnaworld.rockefeller.edu) (10), yield-
ing sequencing statistics and merged miRNA, miRNA clus-
ter and calibrator read counts. Merged miRNA refers to
combined counts of multicopy miRNAs from different ge-
nomic locations and miRNA clusters are transcriptional
units as defined (19); the term ‘miRNA’ will hereafter re-
fer to merged miRNA data. Annotated sequencing statistics
for all samples are presented in Supplementary Table S2;
miRNA content was calculated using total RNA and cali-
brator RNA input ratio multiplied by total miRNA and cal-
ibrator count ratio as described (7). miRNA, miRNA clus-
ter and calibrator read counts for all samples are presented
in Supplementary Tables S3–S5, respectively.

Data preprocessing and filtering

Data preprocessing, filtering and subsequent analyses were
performed in MATLAB (Mathworks, Inc., Natick, MA,
USA, version R2019a) as described (18). To report miRNA
abundance independent of sequencing depth, read counts
were normalized against total sequence reads annotated as
miRNAs. Sample outliers and batch effects were identi-
fied through correlation analyses (20) of miRNA expres-
sion profiles and excluded from the final dataset to in-
crease study rigor. These analyses were completed for each
NEN pathological type or site-matched non-NEN control
group prior to preprocessing of the combined sample set.
Sequencing data were of sufficient quality for 221 (92%) of
239 NEN cases and 114 (82%) of 139 non-NEN controls.
Most excluded samples were individual outliers, except for
10 non-NEN samples from a single sequencing run. Fol-
lowing preprocessing, all non-human miRNAs and human
miRNA STAR sequences were excluded from further anal-
yses. To exclude miRNAs or miRNA clusters with low ex-
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pression across samples, a filtering threshold was applied as
described (6); specific filtering thresholds were set as a per-
centile of overall expression as indicated below.

Unsupervised hierarchical clustering of filtered miRNA ex-
pression profiles

To assess sample grouping, unsupervised hierarchical clus-
tering was performed using log2 transformed normalized
read counts of miRNA and miRNA clusters from all pre-
processed samples. Euclidean distance was used as the sim-
ilarity parameter with complete agglomeration clustering
applied in the heatmap.2 function of the R gplots pack-
age (www.rdocumentation.org/packages/gplots/versions/3.
0.1.1). Lowly expressed miRNAs and miRNA clusters were
excluded with the filtering threshold set as the top 75%
abundant miRNA and clusters in at least one sample.

Assessment and comparative analyses of abundant miRNAs
in NEN and non-NEN samples

To identify candidate miRNA markers for all NENs and
for each NEN pathological type, we ranked miRNAs and
miRNA clusters by abundance and considered the top 1%.
These abundant miRNAs and miRNA clusters were com-
pared and correlated between NEN cases and non-NEN
controls, as well as between each pathological type and
site-matched non-NEN control group. To highlight sub-
stantial differences in miRNA expression, only compar-
isons with 20-fold or greater difference are discussed. For
single-member miRNA clusters, abundance measures ap-
proximate the abundance of the single miRNA, and are not
separately discussed.

Discovery analyses for miRNA-based NEN classification

To identify miRNAs or miRNA clusters that accurately
discriminate between or within epithelial or non-epithelial
NENs, we used an established feature selection algorithm
that is an ensemble of 12 different machine learning tech-
niques with 5-fold cross-validation (20). To prioritize high
expression, we set the filtering threshold to the 90th per-
centile; miRNAs or miRNA clusters expressed above this
threshold in >5% of samples were retained. Next, we ranked
miRNAs and miRNA clusters that discriminate epithe-
lial from non-epithelial NENs (comparison A). We subse-
quently ranked miRNA markers that successively identified
epithelial NENs, including parathyroid adenoma (PTA), pi-
tuitary adenoma (PitNET), Merkel cell carcinoma (MCC),
medullary thyroid carcinoma (MTC) and lung NENs from
gastrointestinal–pancreatic (GEP) NENs (comparisons B–
F), respectively. Lastly, we identified miRNA markers that
discriminated neuroblastoma (NB), pheochromocytoma
(PCC) and extra-adrenal paraganglioma (PGL) from each
other (comparisons G and H) within the non-epithelial
group. Only the top-ranking 3% miRNAs and miRNA clus-
ters in these comparisons were assessed for classification be-
low.

Construction and cross-validation of multilayer classifier

Scaling our existing approach to miRNA-based NEN clas-
sification (18,20), we constructed and cross-validated a mul-

tilayer classifier for discriminating NEN pathological types
based on selected miRNAs. For each decision layer, all
available algorithms (n = 23) in the MATLAB Classi-
fication Learner App were evaluated using 5-fold cross-
validation. In each case, the classification model with high-
est accuracy was a support vector machine (SVM) classi-
fier that was used to identify the smallest subset of miRNAs
with the most discriminatory power for comparisons A–H
above. Based on these subsets, we constructed a multilayer
classifier through which miRNA profiles were first assigned
as epithelial or non-epithelial prior to assignment to a spe-
cific pathological type.

Assessment of classifier performance and transferability

To assess the performance and transferability of our multi-
layer classifier, we used t-stochastic neighbor embedding (t-
SNE) to visualize sample grouping patterns based on miR-
NAs selected for classification. We also determined overall
classifier accuracy, evaluated the impact of miRNA cluster
member substitutions on classifier accuracy and inspected
the expression levels of the selected miRNAs.

Statistical analyses

Statistical analyses of clinical parameters were performed
using SPSS Statistics (IBM, Armonk, NY, USA, version 25)
and MATLAB. Differences in miRNA content and normal-
ized miRNA expression were evaluated between NEN and
non-NEN samples, and within NEN pathological types us-
ing the non-parametric Kruskal–Wallis (K–W) test (21); a
two-sided P-value of <0.05 was considered significant. Sim-
ilarities in miRNA expression between samples were deter-
mined using Spearman’s correlation (22).

RESULTS

Anatomical distribution and histopathological diagnoses of
study samples

To characterize and compare miRNA expression between
NEN and non-NEN samples, we collected relevant study
materials, generated comprehensive miRNA expression
profiles through barcoded small RNA sequencing, qual-
ity controlled profiles through data preprocessing and per-
formed downstream analyses using statistical and ma-
chine learning approaches. Following data preprocessing
for quality control, our final study cohort comprised 221
NEN cases and 114 site-matched non-NEN controls, here-
after termed study samples (Table 1). NEN cases comprised
15 distinct pathological types, arising in seven anatom-
ical sites, including the gastrointestinal tract and pan-
creas, lung, parathyroid gland, pituitary gland, skin, thy-
roid gland, and the adrenal gland and extra-adrenal sites.
Site-matched non-NEN controls comprised non-diseased
tissues and non-NEN cancers from five anatomical sites,
including the pancreas, lung, parathyroid gland, skin and
thyroid gland.

Small RNA sequencing of study samples

We generated comprehensive miRNA expression profiles
for all samples through barcoded small RNA sequencing.

D
ow

nloaded from
 https://academ

ic.oup.com
/narcancer/article/2/3/zcaa009/5867117 by Q

ueen's U
niversity, Kingston, O

ntario, C
anada user on 26 O

ctober 2020

http://www.rdocumentation.org/packages/gplots/versions/3.0.1.1


4 NAR Cancer, 2020, Vol. 2, No. 3

Table 1. Anatomical distribution and histopathological diagnoses of study
samples

NENs
Number of

samples, n (%) non-NENs
Number of

samples, n (%)

Total 221 114
Epithelial
Gastrointestinal
tract and pancreas
PanNET 28 (13%) PAAD 10 (9%)
INET 31 (14%)
AppNET 15 (7%)
RNET 7 (3%)
Lung
TC 13 (6%) LAC 9 (8%)a

AC 15 (7%) LUNG 15 (12%)a

SCLC 11 (5%)
LCNEC 13 (6%)
Parathyroid gland
PTA 9 (4%) PTG 15 (13%)
Pituitary gland
PitNET 10 (5%)
Skin
MCC 17 (8%) SK 10 (9%)

Thyroid
MTC 9 (4%) TG 10 (9%)b

TN 45 (39%)b

Non-epithelial
Adrenal gland and
extra-adrenal sites
NB 25 (11%)
PCC 10 (5%)
PGL 8 (4%)

aFor lung NENs, neoplastic (LAC) and non-diseased (LUNG) tissue con-
trols were available.
bFor MTC, neoplastic (TN) and non-diseased (TG) tissue controls were
available.
Anatomical location and diagnostic histopathological information are pre-
sented for 221 NEN cases, comprising 15 pathological types from seven
anatomical sites, and 114 site-matched non-NEN controls, comprising
seven diagnostic entities from five anatomical sites. Sample abbreviations:
AC, atypical carcinoid; AppNET, appendiceal NET; INET, ileal NET;
LCNEC, large-cell NEC; MCC, Merkel cell carcinoma; MTC, medullary
thyroid carcinoma; NB, neuroblastoma; PanNET, pancreatic NET;
PCC, pheochromocytoma; PGL, paraganglioma; PitNET, pituitary ade-
noma; PTA, parathyroid adenoma; RNET, rectal NET; SCLC, small-
cell lung carcinoma; TC, typical carcinoid. Non-NEN samples comprise
lung (LUNG), lung adenocarcinoma (LAC), pancreatic adenocarcinoma
(PAAD), parathyroid gland (PTG), skin (SK), thyroid gland (TG) and thy-
roid neoplasm (TN).

Following sequence annotation, we obtained a median of
4 386 727 (range: 53 516–40 305 4453) total small RNA
reads and 258 932 (range: 1312–3 723 507) calibrator reads
(Supplementary Table S2). For miRNAs, we detected a
median of 2 322 722 (range: 1740–34 781 174) miRNA
sequence reads, representing a median of 63.1% total se-
quence reads; miRNA, miRNA cluster and calibrator ex-
pression profiles for each sample were subsequently gener-
ated from these reads. Median miRNA content was 26.4
(range: 0.0–2048.4) fmol/�g total RNA (Supplementary
Table S2).

Abundant miRNA composition in NEN and non-NEN sam-
ples

To better understand miRNA composition in NEN and
non-NEN samples, we assessed and correlated abundant

miRNAs and miRNA clusters within and between sam-
ple sets. Abundant miRNA and miRNA cluster compo-
sition was similar within all NEN cases or all non-NEN
controls. The number of members in each miRNA cluster
is indicated in parentheses following the cluster name, e.g.
cluster-hsa-mir-98(13). Among all NEN cases, miR-375, -
21, -143, -let-7a, -26a, -7, -let-7f and -125b and cluster-mir-
375(1), -98(13), -21(1) and -23a(6) were the most abundant
miRNAs and miRNA clusters, with the median relative fre-
quency ranging 1.5–10.6% and 3.6–10.6% of respective total
read counts (Supplementary Table S6). Within this group,
miR-375, -21, -143, -let-7a, -26a, -7, -let-7f, -125b and -141
and cluster-mir-98(13), -mir-375(1), -mir-7-1(3) and -mir-
143(2) were highly expressed in five or more pathological
types (Supplementary Table S6). In comparison, among all
non-NEN controls, miR-21, -125b, -let-7a, -143, -let-7f, -
30a, -26a and -29a and cluster-mir-98(13), -21(1), -30a(4)
and -23a(6) were the most abundant miRNA and miRNA
clusters, ranging 2.5–10% and 5.2–15.9% of respective to-
tal miRNA-annotated read counts (Supplementary Table
S7). Within this group, miR-21, -let-7a, -143, -30a, -let-
7b and -30d and cluster-mir-98(13), -mir-21(1), -mir-23a(6)
and -mir-30a(4) were highly expressed in five or more non-
NEN entities (Supplementary Table S7). Correlation analy-
ses highlighted the similarities in abundant miRNA compo-
sition within epithelial and non-epithelial NENs; with the
exception of PTA, NEN cases were less correlated with site-
matched non-NEN controls (Supplementary Figure S1).

Comparative analyses of abundant miRNAs in NEN and non-
NEN samples

To better understand meaningful differences in miRNA
composition between NEN and non-NEN samples, we
compared abundant miRNAs and miRNA clusters for all
NEN samples and for each pathological type with rele-
vant controls. Comparative analyses indicated that miR-
375 and miR-7 were 216- and 48-fold higher in all NEN
cases compared to all non-NEN controls, respectively. Fold
changes ranged 59–816- and 41–69-fold higher for miR-375
and miR-7 in specific NEN pathological types compared to
site-matched non-NEN controls (Supplementary Table S6
and Figure 1). The only exception was observed in PTA,
which showed the lowest miR-375 and miR-7 expression of
all NENs; in fact, higher expression was observed in non-
neoplastic parathyroid glands. Other notable miRNA over-
expression among NENs included miR-127, with 86-fold
higher expression in typical carcinoids (TC) compared to
lung non-NEN tissues (Supplementary Table S6); cluster-
mir-127(8) was also 78-fold higher in TC compared to lung
non-NEN tissues (data not shown). In addition, miR-203
and miR-205 expression was 143- and 366-fold higher in
non-NEN skin controls than MCC, respectively (Supple-
mentary Table S7).

Unsupervised hierarchical clustering of filtered miRNA ex-
pression profiles

To assess the classificatory potential of miRNA expres-
sion profiling, we first explored our data using unsuper-
vised hierarchical clustering. With the exception of all PTA
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Figure 1. miR-375 and miR-7 expression in NEN and non-NEN samples. Normalized miR-375 and miR-7 expression was examined between 15 NEN
pathological types and 7 site-matched non-NEN control groups. Site-matched NEN and non-NEN groups were designated by anatomical site in the
color bar: pancreas (blue), lung (red), parathyroid (purple), skin (orange) and thyroid (green); NENs without a site-matched control were left blank. Both
miR-375 and miR-7 were higher expressed in NEN cases than non-NEN controls. With the exception of PTA, miR-375 expression was higher in NEN
pathological types than in site-matched non-NEN controls. With the exception of PTA, miR-7 was also higher in NEN pathological types compared to site-
matched non-NEN controls. Abbreviation: log2 RF, log2 normalized relative frequency. Sample abbreviations are provided in Table 1 and Supplementary
Table S1.
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Figure 2. Unsupervised hierarchical clustering of study samples based on miRNA expression. Unsupervised hierarchical clustering using Euclidean dis-
tance and complete agglomeration clustering was performed using filtered (union of top 75% abundance) log2 normalized miRNA sequence reads for all
NEN cases (n = 221) and non-NEN controls (n = 114). Anatomical groupings comprise the following pathological types described in Table 1 and Supple-
mentary Table S1: thyroid (MTC, TG, TN), skin (MCC, SK), pituitary gland (PitNET), parathyroid gland (PTA, PTG), lung (AC, TC, SCLC, LCNEC,
LAC, LUNG), GEP (AppNET, INET, PNET, RNET), and adrenal and extra-adrenal (PCC, PGL). With noted exceptions, NEN cases and non-NEN
controls, and epithelial and non-epithelial samples, clustered distinctly and NEN pathological types preferentially clustered with each other than with
site-matched non-NEN controls.

samples and one large-cell NEC (LCNEC) sample, NEN
cases and non-NEN controls clustered separately (Figure
2). In addition, epithelial samples clustered distinctly from
non-epithelial samples with the exception of one pancre-
atic NET (PanNET). NEN pathological types preferentially
clustered together rather than with site-matched non-NEN
controls. Unsupervised hierarchical clustering of filtered
miRNA cluster expression from the same samples clustered
as above (Supplementary Figure S2).

Discovery analyses for miRNA-based NEN classification

Next, we identified candidate miRNA markers for NEN
classification using an established approach comprising fea-
ture selection and validation (18). Using this approach,
we selected effective miRNA markers from the top-ranked

3% miRNAs or miRNA clusters discriminating between or
within epithelial or non-epithelial NENs (Supplementary
Tables S8 and S9). These comparisons were used to con-
struct and assess the reliability of the multilayer classifier
below.

Construction and cross-validation of multilayer classifier

We subsequently constructed and assessed the accuracy of
a multilayer miRNA-based classifier for predicting NEN
pathological types with 5-fold cross-validation (Figure 3).
The resulting classifier consisted of eight decision layers,
using the linear or cubic SVM model at each layer (Sup-
plementary Table S10). In the first layer, miR-200a ex-
pression was significantly higher in epithelial than non-
epithelial NENs (K–W P-value <0.01); miR-10b provided
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Figure 3. Multilayer miRNA-based classifier for predicting NEN pathological types. A multilayer classifier for predicting NEN pathological types was
developed using supervised machine learning models. In the first layer, NEN miRNA profiles were classified as epithelial or non-epithelial based on miR-
10b and miR-200a expression. In subsequent layers, epithelial and non-epithelial NENs were successively identified using the selected miRNAs as indicated.
Sample abbreviations are provided in Table 1 and Supplementary Table S1.

additional prediction power (K–W P-value <0.01). When
combined, these two miRNAs discriminated epithelial and
non-epithelial NENs with only one sample misclassification
(Figure 4A), which was found to be a histological misiden-
tification (see below). In subsequent layers, sample profiles
were successively assigned to other pathological types us-
ing the least number of miRNAs required. Within epithe-
lial NENs, PTA, PitNET, MCC and MTC were, respec-
tively, discriminated from remaining NENs based on ex-
pression of miR-30a, miR-10a and miR-212-3p, miR-15b
and miR-660, and miR-335-5p, miR-29a and miR-222 (Fig-
ure 4B–E). Lung NENs and GEP NENs were discriminated
based on expression of miR-760, miR-1224-5p, miR-139,
miR-205 and miR-9 with three misclassifications (Figure 4F
and G). Within non-epithelial NENs, NB and PCC/PGL,
and PCC or PGL, were accurately discriminated based
on expression of miR-93, and miR-10b and miR-397, re-
spectively (Figure 4H and I). Decision node level accuracy
ranged from 97% to 100% (Supplementary Table S10).

Assessment of classifier performance and transferability

Using the 17 miRNAs selected for multilayer classification,
t-SNE analysis indicated clear separation of epithelial and
non-epithelial NENs with one notable exception (Figure

5), which was found to be a histological misidentification
(see below). NEN pathological types also grouped together
within epithelial and non-epithelial clusters. With 217 of
221 samples accurately classified, the overall accuracy of
our multilayer classifier was 98% (Table 2). miRNA clus-
ter substitutions had little to no effect on overall and deci-
sion node level accuracy (data not presented). At each de-
cision node of the classifier, selected miRNAs were always
more highly expressed in one comparison group (0.40%;
range: 0.01–7.82%) versus the other (0.03%; range: 0.00–
2.35%; Supplementary Table S11), highlighting their poten-
tial as translatable tissue markers of specific NEN patholog-
ical types.

Detection of histological misidentification by miRNA-based
NEN classifier

The unusual finding of an epithelial PanNET within the
cluster of non-epithelial NENs (Figures 4A and 5), in ad-
dition to miRNA-based classification of this PanNET as
a PGL (Table 2), prompted us to review the histopathol-
ogy of this case. Upon review, the tumor was a small (<1
cm in size) low-grade NET at the tail of the pancreas, with
histological features overlapping both PanNET and PGL.
Immunohistochemical analysis showed that the tumor cells

D
ow

nloaded from
 https://academ

ic.oup.com
/narcancer/article/2/3/zcaa009/5867117 by Q

ueen's U
niversity, Kingston, O

ntario, C
anada user on 26 O

ctober 2020



8 NAR Cancer, 2020, Vol. 2, No. 3

Figure 4. Scatter plot assessment of miRNAs selected for classification. Epithelial and non-epithelial NENs are effectively discriminated based on miR-
10b and miR-200a expression with one misclassification (A). Within epithelial NENs, PTA, PitNET, MCC and MTC were accurately discriminated from
the remaining NENs based on miR-30a expression (B), miR-10a and miR-212-3p expression (C), miR-15b and miR-660 expression (D), and miR-335-5p,
miR-29a and miR-222 expression (E); lung NENs and GEP NENs were discriminated based on miR-760, miR-1224-5p, miR-139, miR-205 and miR-9
expression (F, G). Within non-epithelial NENs, NB was accurately discriminated from PCC/PGL based on miR-93 expression (H), and PCC and PGL were
separated based on miR-10b and miR-379 expression (I). Similar results were generated using relevant miRNA cluster data and are not presented. Arrows
indicate misclassified samples. Abbreviation: log2 RF, log2 normalized relative frequency. Sample abbreviations are provided in Table 1 and Supplementary
Table S1.

were diffusely positive for synaptophysin, chromogranin A
and GATA3, and negative for cytokeratin (AE1/AE3 an-
tibodies). This phenotype diagnosed this tumor as a PGL,
as predicted by the miRNA classifier, and not a PanNET,
which should be cytokeratin-positive and GATA3-negative
(23,24). The unusual case was misidentified based on initial
histology, but was correctly diagnosed by molecular profil-
ing and miRNA-based classification.

DISCUSSION

Accurate NEN classification is essential for understanding
tumor biology and guiding clinical care. NEN pathologi-
cal classification is modified by experts on an ongoing ba-

sis as updated clinical, pathological, biological and molecu-
lar data become available. Recently, these experts proposed
a common classification framework for evaluating NENs,
clarifying terminology to reduce confusion and harmoniz-
ing concepts to facilitate comparisons between pathological
types (3). Although morphology-based, this framework is
designed to incorporate ‘equally solid genetic studies across
all anatomical sites (3)’ over time. Here, we generate biolog-
ical and clinical insights into NENs through miRNA-based
classification.

The strength of our study stems from comparing multiple
NEN pathological types and site-matched non-NEN con-
trols using comprehensive miRNA detection through bar-
coded small RNA cDNA library sequencing (25) and ac-
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Figure 5. t-SNE for selected classificatory miRNAs. Sample grouping was visually assessed using miRNAs selected for multilayer classification and t-SNE
analysis. With one notable exception, samples clustered as epithelial or non-epithelial NENs and tended to group by pathological type. The exception was
a misdiagnosed PanNET later found to be a PGL on further testing. Sample abbreviations are provided in Table 1 and Supplementary Table S1.

curate sequence annotation (19). Advanced computational
approaches for miRNA feature selection (20) and classi-
fier construction (18) further bolstered our approach. We
carefully assessed data reliability through knowledge of
miRNA cluster composition (10), evaluated classifier per-
formance and transferability by determining overall and de-
cision node level accuracy, gauged the impact of miRNA
cluster substitutions on accuracy and inspected the abun-
dance of selected classificatory miRNAs. Throughout the
study, miRNA clusters measured data quality and transfer-
ability of miRNAs as clinical markers; we then focused on
miRNAs to build a streamlined prototype of a tool for NEN
classification. The identified miRNAs can be used as mono-
analyte or multi-analyte markers as needed (12).

Unsupervised hierarchical clustering of filtered miRNA
expression profiles confirms existing knowledge and pro-
vides new knowledge of NEN grouping. With the exception
of all PTA and one LCNEC sample, NEN cases and non-
NEN controls clustered separately. Based on these find-
ings, we speculate that all PTA have a distinct gene expres-
sion pattern linked to their indolent behavior; the LCNEC
sample showed areas of possible squamous cell differenti-
ation (data not shown) that may explain peculiar cluster-
ing patterns. Within NENs, two major groups correspond-
ing to epithelial and non-epithelial NENs are evident; in-
terestingly, one epithelial NEN clusters with non-epithelial
NEN samples. Here, we show that these epithelial and non-
epithelial NENs can be discriminated through miR-200a
(26) and miR-10b expression, and confirm that our ep-
ithelial PanNET sample is actually a non-epithelial PGL
based on additional cytokeratin and GATA-3 immunos-
taining (23,24). Within non-NENs, samples group mostly
by anatomical site of origin as expected (6). Visual inspec-
tion of cluster diagrams indicates similarities and differ-

ences in abundant miRNA composition in NEN and non-
NEN samples.

Similarities in abundant miRNA composition between
samples provide coarse insights into cellular gene expres-
sion programs. Within NENs, miR-375, -21, -143, -let-7a,
-26a, -7, -let-7f, -125b and -141 were highly expressed in
five or more pathological types; known oncogenic or tu-
mor suppressor functions for these miRNAs are reviewed
elsewhere (8,27). miR-375, the most abundant miRNA in
NENs, is believed to regulate lineage-specific differentiation
(28–31), growth (32,33) and function (32,34) of neuroen-
docrine cells. Correlation analyses highlighted similarities
in abundant miRNA composition for all NENs, including
epithelial or non-epithelial NENs. These findings indicate
that all NENs have a constitutive miRNA gene expression
program that likely directly or indirectly maintains the neu-
roendocrine cell phenotype. Given the different cellular ori-
gins of epithelial and non-epithelial NENs (35), convergent
miRNA gene expression likely implies functional similari-
ties. Within non-NEN samples, miR-21, -let-7a, -143, -30a,
-let-7b and -30d were highly expressed in five or more non-
NEN entities; their cancer-related functions are reviewed
elsewhere as above. While mechanistic insights into cellu-
lar processes can be gained through predictable targeting
of mRNAs by abundant miRNAs, this topic is beyond the
scope of the present study (36).

Differences in abundant miRNA composition between
samples can also be used to identify new and confirm
known miRNA markers. miR-375 expression was substan-
tially higher in all NEN cases compared to non-NEN con-
trols. Where comparisons allowed, miR-375 was consis-
tently higher in NEN pathological types compared to site-
matched non-NEN controls. Based on current miRNA ex-
pression tissue atlases, miR-375 is currently thought to be
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Table 2. Overall accuracy of multilayer classifier for discriminating NENs

Established diagnosis

GEP NET Lung NET MTC MCC PitNET PTA PCC PGL NB

Multilayer classifier
designation

GEP NET 80 3

Lung NET 49
MTC 9
MCC 17

PitNET 10
PTA 9
PCC 10
PGL 1 8
NB 25

Decision-level accuracy 80/81
(99%)

49/52
(94%)

9/9
(100%)

17/17
(100%)

10/10
(100%)

9/9
(100%)

10/10
(100%)

8/8
(100%)

25/25
(100%)

Overall accuracy 217/221 (98%)

Using our multilayer classifier, NEN miRNA profiles were assigned to one of nine pathological subgroups or pathological types. Cases of GEP NENs
(AppNET, INET, PNET, RNET) or lung NENs (TC, AC, SCLC, LCNEC) were not assigned to individual pathological types because we previously
developed miRNA-based classifiers for these subgroups (18) (Wong et al., in preparation). By comparing classifier designations to established histopatho-
logical diagnoses, we determined our overall classifier accuracy to be 98%. Additional measures of classifier performance were also calculated: precision
(0.98), recall (0.99) and Matthews correlation coefficient (0.98). Sample abbreviations are provided in Table 1 and Supplementary Table S1.

an endocrine gland specific marker (6,37). However, the
presence of miR-375 in enteroendocrine cells (30,38), pan-
creatic beta cells (32,33), thyroid C cells (39), and MCC
(7,31,40), NB (15) and SCLC cell lines (29) suggests that
miR-375 is a neuroendocrine cell marker. Given the speci-
ficity and distribution of miR-375 in our samples and its
reported abundance in seemingly disparate NEN patholog-
ical types (7,18,38,41–43), we propose that miR-375 is a uni-
versal marker of neuroendocrine cell differentiation. miR-
375 appears to be highly expressed in NENs, in amounts
proportional to the number of normal neuroendocrine cells
and/or the degree of neuroendocrine differentiation within
control tissues or tumors; neuroendocrine differentiation of
tumors is more common than currently appreciated (44).
More systematic studies are required to confirm this pro-
posal.

Although less abundant than miR-375, miR-7 expres-
sion was also elevated in all NEN cases compared to non-
NEN controls. Where comparisons allowed, miR-7 was of-
ten higher in NEN pathological types compared to site-
matched non-NEN controls. Other than expression in the
pituitary gland, atlas studies provide limited information on
miR-7 expression (6,37). However, the presence of miR-7 in
enteroendocrine cells (30), pancreatic islet cells (33,45), thy-
roid C cells (46), but not controls suggests that this miRNA
also has some degree of neuroendocrine specificity. Given
their specificity, some tissue profiling studies may have in-
advertently interpreted miR-375 or miR-7 reduction in ex-
pansile cancer lesions as miRNA reduction rather than neu-
roendocrine cell destruction. Although miR-127 was higher
in TC than non-NEN controls, the significance of this dif-
ference is unclear. Conversely, comparisons of abundant
miRNA composition between non-NEN and NEN sam-
ples identified known tissue-specific miRNA markers such
as miR-203 and miR-205 (6).

As with other cancers (4), miRNAs can be used for NEN
classification. Using our feature selection algorithm, we
identified 17 miRNAs to discriminate 15 NEN pathologi-
cal types; t-SNE analyses using these miRNAs clearly sep-
arated epithelial and non-epithelial NENs and suggested

clustering by pathological type. Given their classificatory
potential, we subsequently constructed and validated a mul-
tilayer classifier for discriminating NEN pathological types,
correctly identifying 217 (98%) of 221 samples. Three of
the four misclassified samples occurred at the GEP NEN
versus lung NEN decision node, suggesting model over-
fitting and the need for additional samples for validation.
On further testing, the fourth ‘misclassified’ sample turned
out to be a PGL as indicated by miRNA expression profil-
ing. We also introduced criteria for evaluating classifier per-
formance and transferability, including determining over-
all and decision node level accuracy, assessing the impact
of miRNA cluster substitutions on classifier accuracy and
showing the relative abundance of miRNAs selected for
classification.

This study does have limitations that are commonly en-
countered in rare cancer and miRNA research. Compre-
hensive clinical information is challenging to obtain, limited
sample numbers preclude hold out validation and miRNA
content measurements can vary widely due to technical
challenges. Nonetheless, we provide compelling evidence
that miRNAs are useful for NEN classification and should
be included in further multi-omic studies of these neo-
plasms.

Through comprehensive miRNA expression profiling, we
have identified candidate universal and classificatory mark-
ers that may be useful as adjunct tissue markers, constructed
a multilayer classifier for discriminating NENs and pro-
vided reference profiles for hypothesis generation or inter-
study comparisons. Our next steps involve confirming our
findings in well-annotated sample sets, evaluating miRNAs
as circulating markers and investigating upstream promoter
activity and downstream targeting events.

DATA AVAILABILITY

Annotated miRNA and miRNA cluster counts (Supple-
mentary Tables S3 and S4) have also been deposited
to Data Dryad (https://datadryad.org/stash/dataset/doi:10.
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YAP1, the main Hippo pathway effector, is a potent oncogene and is overex-

pressed in non-small-cell lung cancer (NSCLC); however, the YAP1 expression pat-

tern in small-cell lung cancer (SCLC) has not yet been elucidated in detail. We

report that the loss of YAP1 is a special feature of high-grade neuroendocrine

lung tumors. A hierarchical cluster analysis of 15 high-grade neuroendocrine

tumor cell lines containing 14 SCLC cell lines that depended on the genes of

Hippo pathway molecules and neuroendocrine markers clearly classified these

lines into two groups: the YAP1-negative and neuroendocrine marker-positive

group (n = 11), and the YAP1-positive and neuroendocrine marker-negative

group (n = 4). Among the 41 NSCLC cell lines examined, the loss of YAP1 was

only observed in one cell line showing the strong expression of neuroendocrine

markers. Immunostaining for YAP1, using the sections of 189 NSCLC, 41 SCLC,

and 30 large cell neuroendocrine carcinoma (LCNEC) cases, revealed that the loss

of YAP1 was common in SCLC (40/41, 98%) and LCNEC (18/30, 60%), but was rare

in NSCLC (6/189, 3%). Among the SCLC and LCNEC cases tested, the loss of YAP1

correlated with the expression of neuroendocrine markers, and a survival analysis

revealed that YAP1-negative cases were more chemosensitive than YAP1-positive

cases. Chemosensitivity test for cisplatin using YAP1-positive/YAP1-negative SCLC

cell lines also showed compatible results. YAP1-sh-mediated knockdown induced

the neuroendocrine marker RAB3a, which suggested the possible involvement of

YAP1 in the regulation of neuroendocrine differentiation. Thus, we showed that

the loss of YAP1 has potential as a clinical marker for predicting neuroendocrine

features and chemosensitivity.

I n the 2015 WHO classification, SCLC and LCNEC have
been categorized together as high-grade neuroendocrine

tumors,(1) which are highly aggressive tumors with a poor
prognosis. Although high-grade neuroendocrine tumors respond
to platinum-based chemotherapy,(2–7) a cure is sometimes diffi-
cult to achieve because these tumors are likely to be widely
disseminated by the time of diagnosis. In spite of the many
challenges associated with identifying potential targeted thera-
pies, no targeted agents had been approved for use in the treat-
ment of SCLC and LCNEC cases until very recently.
Therefore, the mechanisms underlying carcinogenesis in high-
grade neuroendocrine tumors need to be elucidated in more
detail, and improvements in the therapies for these tumors are
desired.
It has become increasingly apparent that abnormalities in the

upstream and downstream members of the Hippo pathway play
important roles in the tumorigenesis of various human

cancers.(8) The Hippo pathway has been implicated in the cell
contact inhibition of proliferation as well as organ size con-
trol.(9) As the main downstream effector of the Hippo pathway,
YAP1 promotes cell growth as a transcription cofactor and
may be inactivated through its cytoplasmic retention and phos-
phorylation by LATS1/2.(10,11) The YAP1 gene was previously
reported to be amplified and overexpressed in several tumor
types.(12–16) The overexpression of YAP1 has also frequently
been observed in NSCLC, and is a poor prognostic factor.(14)

Few studies have focused on YAP1 in SCLC; Wu et al.’s(17)

study identified some single nucleotide polymorphisms within
the promoter region of YAP1 that were associated with the
survival of SCLC patients, and Nishikawa et al.(18) reported
the inhibition of YAP1 by ASCL1 through the activation of
mir375. These findings suggest the importance of YAP1 in
high-grade neuroendocrine tumors; however, its role in neu-
roendocrine differentiation currently remains unknown, and an
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immunohistochemical analysis of YAP1 using SCLC and
LCNEC tissue sections has not yet been undertaken.
In the present study, we report the potential of the loss of

YAP1 as a clinical marker to predict neuroendocrine features
and chemosensitivity. As far as we know, this study is the first

to reveal the roles of YAP1 not only in cisplatin resistance but
also in determination of neuroendocrine features of high-grade
neuroendocrine tumors.

Materials and Methods

Cell lines and medium. Fourteen SCLC cell lines (SBC3,
SBC5, LCMA, Lu135, N417, H2081, H146, Lu139, Lu130,
H69, H446, H526, H889, and H510A), seven adenocarcinoma
cell lines (A549, ABC1, LC-2/ad, VMRC-LCD, H292, H441,
and H1651), one adenosquamous cell carcinoma cell line
(H596), and one large-cell carcinoma (H460) were used for
Western blot and/or gene expression analyses per mRNA-Seq.
H460, derived as a large-cell carcinoma, has been regarded as
a LCNEC cell line in some studies.(19,20) The 14 SCLC cell
lines and H460 cell line are described as 15 high-grade neu-
roendocrine tumor cell lines in the present study for conve-
nience. All cell lines were maintained in RPMI-1640
supplemented with 10% FCS, glutamine, and antibiotics in a
humidified atmosphere with 5% CO2 and 95% air. The sources
and histological types of these cell lines are detailed in
Table 1.

Gene expression analysis per transcriptome sequencing. Gene
expression analysis of the 15 high-grade neuroendocrine tumor
cell lines was carried out per mRNA-Seq using an Illumina
GAIIx sequencer (Illumina, San Diego, CA, USA). Details are
shown in Appendix S1.

Oligonucleotide array analysis data. We used the gene expres-
sion data of the oligonucleotide array analysis on 41 NSCLC
cell lines including H460 obtained in our previous studies.(21–
23) The sources and histological types of these cell lines are
detailed in our previous study.(22)

Western blot analysis. Western blot analysis was carried out
as previously described.(24) Briefly, cell lysates were prepared
from lung cancer cell lines using a lysis buffer containing a
protease inhibitor mixture (200 lM 4-(2-aminoethyl) benzene-
sulfonyl fluoride, 10 lM leupeptin, and 1 lM pepstatin A).
Equal amounts of total protein (20 lg) were fractionated in
7.5% SDS-PAGE, transferred to a PVDF membrane (Milli-
pore, Bedford, MA, USA), and incubated with an appropriate

Table 1. Histological types and sources of 24 lung carcinomas

Cell line
Histological

type
Cell type Source

H69 Small-cell lung

cancer

Floating ATCC (Manassas, VA,

USA)

H146 Small-cell lung

cancer

Floating ATCC

H510A Small-cell lung

cancer

Floating ATCC

H889 Small-cell lung

cancer

Floating ATCC

N417 Small-cell lung

cancer

Floating ATCC

H2081 Small-cell lung

cancer

Floating ATCC

H446 Small-cell lung

cancer

Floating ATCC

H526 Small-cell lung

cancer

Floating ATCC

Lu130 Small-cell lung

cancer

Floating Japanese Cancer Research

Resources Bank (Osaka,

Japan)

Lu135 Small-cell lung

cancer

Floating Japanese Cancer Research

Resources Bank

Lu139 Small-cell lung

cancer

Floating Japanese Cancer Research

Resources Bank

SBC3 Small-cell lung

cancer

Adherent Japanese Cancer Research

Resources Bank

SBC5 Small-cell lung

cancer

Adherent Japanese Cancer Research

Resources Bank

RERF-

LC-MA

Small-cell lung

cancer

Adherent Japanese Cancer Research

Resources Bank

H460 Large-cell

carcinoma

Adherent ATCC

A549 Adenocarcinoma Adherent Japanese Cancer Research

Resources Bank

ABC-1 Adenocarcinoma Adherent Japanese Cancer Research

Resources Bank

LC-2/ad Adenocarcinoma Adherent RIKEN Cell Bank

(Tsukuba, Japan)

VMRC-

LCD

Adenocarcinoma Adherent Japanese Cancer Research

Resources Bank

H292 Adenocarcinoma Adherent ATCC

H441 Adenocarcinoma Adherent ATCC

H1651 Adenocarcinoma Adherent ATCC

H596 Adenosquamous

cell carcinoma

Adherent ATCC

Table 2. Antibodies used for Western blot analysis of lung cancer

cell lines

Antibody Source

YAP (D8H1X) Cell Signaling Technology,

(Danvers, MA, USA)

AMOTL2 (N-14) Santa Cruz Biotechnology

AJUBA Cell Signaling Technology

NCAM (H-300) Santa Cruz Biotechnology

Chromogranin A (LK2H10) Abcam, (Cambridge, UK)

Synaptophysin (ab53166) Abcam

RAB3A (K-15) Santa Cruz Biotechnology

a-Tubulin (TU-02) Santa Cruz Biotechnology

GAPDH (V-18) Santa Cruz Biotechnology

Fig. 1. (a) Hierarchical cluster analysis of 15 high-grade neuroendocrine lung tumor cell lines using the gene expression of Hippo pathway-cor-
related molecules and neuroendocrine differentiation-correlated molecules including neuroendocrine markers and the myc family. The genes of
neuroendocrine markers are shown in red text. The red bar indicates YAP1-positive and neuroendocrine marker-negative cell lines (n = 4); blue
bars indicate YAP1-negative and neuroendocrine marker-positive cell lines (n = 11). (b) Gene expression levels of neuroendocrine markers (YAP1,
ASCL1, CHGA, SYP, and NCAM1) in 15 high-grade neuroendocrine lung tumor cell lines. The numbers enclosed in circles correspond to the cell
lines shown in (a). (c) Immunohistochemical expression patterns of YAP1, synaptophysin, NCAM1, and ASCL1 of a representative YAP1-positive
SCLC cell line (SBC5) and representative YAP1-negative SCLC cell line (H69) under a high-power view field (9400).
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antibody. The binding of the primary antibody was detected
with the ECL Western Blotting Detection Reagent (GE Health-
care, Chalfont St. Giles, UK) using a peroxidase-conjugated
secondary antibody (GE Healthcare). The sources of the anti-
bodies used in this study are summarized in Table 2.

Tissue microarray sections. We used TMAs that were pro-
duced to accommodate primary lung cancer tissue core sec-
tions collected from patients (n = 201) who had undergone
surgical resection at the University of Tokyo Hospital (Tokyo,
Japan) between 2005 and 2008. Of the 201 core sections
examined, 142 were adenocarcinomas, 40 were squamous cell
carcinomas, 7 were pleomorphic carcinomas, 6 were SCLCs,
and 6 were LCNECs. Informed consent was obtained from all
patients, and the study was approved by the Institutional Ethics
Review Committee.

Whole sections of high-grade pulmonary neuroendocrine

tumors. Tumor specimens were obtained from 71 patients (41
SCLCs and 30 LCNECs) who underwent lung cancer surgery

at the Jichi Medical University Hospital (Tochigi, Japan), the
Jichi Medical University Saitama Medical Center (Saitama,
Japan), and the University of Tokyo Hospital. Among 71
cases, 7 were treated with platinum-based neo-adjuvant
chemotherapy (CDDP + GEM [n = 2], CDDP + VP16
[n = 3], CDDP + VNR [n = 1], and CDDP + docetaxel
[n = 1]), 63 cases were not treated with neo-adjuvant
chemotherapy, and one case was unknown. Among the 63
cases not treated with neo-adjuvant chemotherapy, 33 cases
were treated with platinum-based adjuvant chemotherapy
(CBDCA + CPT11 [n = 2], CBDCA + GEM [n = 1],
CBDCA + VNR [n = 1], CBDCA + VP16 [n = 17],
CDDP + VNR [n = 1], CDDP + CBDCA + vindesine [n = 1],
CDDP + CBDCA + VP16 [n = 1], CDDP + CPT11 [n = 1],
CDDP + picibanil [n = 1], CDDP + CPT11 + VP16 [n = 1],
and CDDP + VP16 [n = 6]), only one case was treated with
CAV chemotherapy, 28 cases were not treated with platinum-
based or CAV chemotherapy, and one case was unknown.
Details are shown in Appendix S1. Informed consent was
obtained from all patients, and the study was approved by the
Institutional Ethics Review Committee.

Xenograft tumors of SCLC/NSCLC cell lines. We established
xenograft tumors of SCLC/NSCLC cell lines by injecting cell
suspensions (1 9 107) into the flanks of 6-week-old female
nude mice (BALB/c nu/nu).

Immunohistochemistry and evaluation. Formalin-fixed, paraf-
fin-embedded tumor specimens were analyzed by immunohis-
tochemistry using antibodies to YAP1, synaptophysin,
chromogranin A, NCAM, and ASCL1. The sources of antibod-
ies, staining procedures, and evaluation methods are given in
Appendix S1. In brief, the expression of each neuroendocrine
marker antibody in a tumor was defined as positive when 10%
of the tumor cells or greater were stained, and negative when
less than 10% were stained. The expression of the YAP1

Fig. 2. Western blot analysis of gene products selectively expressed in YAP1-positive and YAP1-negative groups using 15 high-grade neuroen-
docrine lung tumor cell lines (left panel) and 9 non-small-cell lung cancer cell lines (right panel). YAP1, AMOTL2, and AJUBA are Hippo path-
way-correlated molecules and synaptophysin, ASCL1, chromogranin A, and RAB3A are neuroendocrine markers.

Table 3. Immunohistochemical positivity for YAP1, chromogranin A,

synaptophysin, NCAM1, and ASCL1 of xenograft tumors of eight lung

cancer cell lines

YAP1 ASCL1 Synaptophysin Chromogranin A NCAM1

H460† + � � � �
SBC5† + � � � �
N417‡ � � + � +

2081‡ � + + � +

H69‡ � + + � +

510A‡ � + + � +

Lu135‡ � + � � +

H146‡ � + + � +

†YAP1-positive cell lines. ‡YAP1-negative cell lines.

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Cancer Association.

Cancer Sci | October 2016 | vol. 107 | no. 10 | 1530

Original Article
Loss of YAP1 in SCLC www.wileyonlinelibrary.com/journal/cas



antibody in a tumor was defined as positive when more than
0% were stained, and negative when the tumor cells showed
complete negative staining.

Generation of YAP1-deficient cell lines. In order to achieve
the stable knockdown of the YAP1 gene, SCLC cell lines
(SBC3, SBC5, and LCMA) were infected on 12-well plates
with lentiviral particles expressing three distinct target-specific
shRNA or non-targeting shRNA (sc-38637-V and sc-108080)

(Santa Cruz Biotechnology, Dallas, TX, USA) in the presence
of 5 lg/mL polybrene (Santa Cruz Biotechnology). Stably
infected cells were selected with 2 lg/mL puromycin for
2 days and 4 lg/mL puromycin for an additional 2 days.

Evaluation of transcriptional activity of YAP1 by luciferase

assay. A PGLIII/TEAD2-Luciferase plasmid was constructed
by inserting four tandem repeat sequences containing a TEAD-
binding GTIIC (GGAATG) site and its flanking sequences into

Fig. 3. (a) YAP1 gene expression levels
(8224894_at), ASCL1 gene expression levels
(209988_s_at), SYP gene expression levels
(213200_at), and CHGA gene expression levels
(204697_s_at) in 41 NSCLC cell lines including
VMRC-LCD (red arrows). (b) Histopathology of
xenograft tumors of the VMRC-LCD cell line. Top
left panel: HE section in a low-power view field
(940) showing that VMRC-LCD cells proliferate to
form solid nests with extensive necrosis. Top center
and top right panels: HE sections in a high-power
view field (9400). VMRC-LCD cells, having large
nuclei with prominent nucleoli and a more
abundant cytoplasm than SCLC, showed solid
growth patterns with peripheral palisading (top
middle panel) as well as trabecular growth patterns
(top right panel). Middle left, middle center,
middle right, and bottom left panels show the
immunohistochemical expression patterns of ASCL1,
chromogranin A, synaptophysin, and YAP1 of
xenograft tumors of the VMRC-LCD cell line,
respectively, in a high-power view field (9400).
ASCL1 was diffusely positive, chromogranin A and
synaptophysin were partially positive, and YAP1
was completely negative.
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an XhoI-EcoRI site upstream of a firefly luciferase reporter
gene in a pGL3-Basic Vector (Promega, Fitchburg, WI, USA).
A luciferase assay was undertaken in order to monitor the tran-
scriptional activity of YAP1 using the PGLIII/TEAD2-Lucifer-
ase plasmid and the Renilla luciferase plasmid pRL-TK as an
internal control.

Drug sensitivity. The SBC3, SBC5, LCMA, N417, H146,
Lu139, Lu130, H69, H889, H510A, the SBC3-shControl cell
lines, SBC3-shYAP1 cell line, SBC5-shControl cell line,
SBC5-shYAP1 cell line, LCMA-shControl cell line, and
LCMA-shYAP1 cell line were used in triplicate. Cells
(1 9 104 cells) were plated on the wells of 96-well microtiter
plates. After 24 h, cisplatin was added to the wells at the fol-
lowing final concentrations: 10, 3.3, 1, and 0.1 lM. The cells
were then incubated for another 3 days at 37°C. Cells were
removed by treatment with trypsin/EDTA solutions, and then
counted using the Countess automated cell counter (Invitrogen,
Waltham, MA, USA). Results were plotted as cell viability
versus log10 (concentration of reagents) and the IC50 value was
calculated using the software GraphPad Prism 5 (GraphPad
Software, San Diego, CA, USA).

Bioinformatic analyses. We used the CLUSTER program (http://
rana.lbl.gov/EisenSoftware.htm, accessed March 19, 2008) for
a cluster analysis of the gene expression data of cell lines. In
brief, we carried out average linkage hierarchical clustering of

the 15 cell lines using the mean centering and normalization
of genes. We then displayed the results obtained with the aid
of TreeView software (http://rana.lbl.gov/EisenSoftware.htm,
accessed March 21, 2008). The image used a color code to
represent relative expression levels. Red represents expression
levels greater than the mean for a given gene across all sam-
ples. Green represents expression levels less than the mean
across samples.

Statistical analysis. Fisher’s exact test was used to evaluate
clinicopathological relationships. Calculations were carried out
with StatView (Abacus Concepts, Berkeley, CA, USA). P-
values less than 0.05 were considered significant. Survival
curves were generated using the Kaplan–Meier method and
differences in survival were analyzed by the Wilcoxon
method.

Results

Hierarchical cluster analysis of cell lines derived from high-

grade neuroendocrine tumors. We undertook a hierarchical
cluster analysis of the 15 high-grade neuroendocrine tumor cell
lines (14 SCLC cell lines and H460 cell line) based on the
gene expression of Hippo pathway-correlated molecules and
neuroendocrine differentiation-correlated molecules containing
neuroendocrine markers and myc family genes (gene data
shown in Table S1). The results obtained are shown in Fig-
ure 1(a). Fifteen cell lines were divided into two distinctive
groups: the YAP1-negative floating cell type (n = 11) and the
YAP1-positive adherent cell type (n = 4) (Fig. 1a). The YAP1-
negative floating cell type also showed loss of expression of
the WTIP, LATS2, and JUB genes (AJUBA), which are regula-
tors of YAP1 activity, as well as the loss of the gene expres-
sion of TEAD2, a transcriptional factor that interacts with
YAP1. The expression of WWTR1 (TAZ), a YAP1 paralogue,
was also lost in all of the YAP1-negative floating cell types,
however, SBC5, one of the YAP1-postive adherent cell types,
also showed loss of expression of WWTR1. The cell lines
showing strong gene expression of neuroendocrine markers
belonged to the YAP1-negative floating cell type, whereas all
of the cell lines in the YAP1-positive adherent cell type
showed weak gene expression of neuroendocrine markers
(Fig. 1a,b). We then compared the protein expression level of
YAP1 and neuroendocrine markers (chromogranin A, synapto-
physin, and NCAM1) among the 15 cell lines tested by Wes-
tern blotting, and also carried out immunohistochemistry for
YAP1 and neuroendocrine markers (chromogranin A, synapto-
physin, NCAM1, and ASCL1), using the xenograft tumors of
8 of the 15 cell lines. The results of the Western blot analysis
and immunohistochemistry are shown in Figure 2 and Table 3,
respectively. We confirmed that cell lines with the loss of
YAP1 were positive for neuroendocrine markers, whereas
YAP1-positive cell lines were negative for neuroendocrine
markers at the protein level. The typical expression patterns of
the neuroendocrine markers of the YAP1-positive SCLC cell
line SBC5 and YAP1-negative SCLC cell line H69 are shown
in Figure 1(c). These results suggest that the loss of YAP1
correlates with the expression of neuroendocrine markers or
the floating phenotype. Our immunohistochemical analysis of
the xenograft tumors also revealed that it was difficult to deter-
mine whether H460 was an LCNEC cell line, because H460
was negative for all of the neuroendocrine markers.

Expression pattern of YAP1 in NSCLC cell lines. We extracted
and compared the gene expression of YAP1, WWTR1, LATS2,
WTIP, TEAD2, and neuroendocrine markers from the DNA

Table 4. Positivity for YAP1 in each histological subtype of lung

cancer using tissue microarray sections

Histology YAP1-positive YAP1-negative Total

SCLC 1 5 6

LCNEC 3 3 6

NSCLC, except for LCNEC 183 6 189

Total 187 14 201

Small-cell lung cancer (SCLC) versus non-small-cell lung cancer (NSCLC),
except for large-cell neuroendocrine carcinoma (LCNEC), P < 0.0001
(Fisher’s exact test). LCNEC versus NSCLC, except for LCNEC, P = 0.0013
(Fisher’s exact test).

Table 5. Comparison of YAP1 expression levels with histological

subtypes and expression levels of neuroendocrine markers using

whole sections of high-grade neuroendocrine tumors

YAP1 expression
P-value

Positive Negative

Histology

SCLC 1 40 <0.0001

LCNEC 12 18

Synaptophysin

Positive 0 28 0.0010

Negative 13 30

Chromogranin A

Positive 0 24 0.0030

Negative 13 34

ASCL1

Positive 5 42 0.0264

Negative 8 16

NCAM

Positive 7 38 0.5280

Negative 6 20

LCNEC, large-cell neuroendocrine carcinoma; SLCL, small-cell lung
cancer. Underlined P-values are considered significant (P < 0.05).
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array data of 41 NSCLC cell lines including H460, as
described in our previous studies.(21–23) Gene expression data
is shown in Table S2. All NSCLC cell lines were positive for
YAP1, except for VMRC-LCD (Fig. 3a). VMRC-LCD was not
a floating cell line, but an adherent cell line established as a
primary lung adenocarcinoma cell line. However, VMRC-LCD
showed the strongest gene expression of ASCL1, SYP, and
CHGA among the 41 NSCLC cell lines examined (Fig. 3a).
VMRC-LCD showed the loss of YAP1 and stronger expression
of neuroendocrine markers at the protein level than NSCLC
cell lines in the Western blot analysis (Fig. 2). In xenograft
tumors, histologically, VMRC-LCD cells were found to prolif-
erate to form solid nests with extensive necrosis in the low-
power view field (Fig. 3b). In the high-power view field,
VMRC-LCD cells, having large nuclei with prominent nucleoli
and a more abundant cytoplasm than SCLC, showed solid
growth patterns with peripheral palisading (Fig. 3b). Although
these tumors sometimes showed trabecular growth patterns
(Fig. 2d), no mucin was detected by Alcian blue staining (not
shown). VMRC-LCD cells showed high mitotic activity; more
than 100 mitotic figures per 10 high-power fields (9400). The
results of the immunohistochemical analysis revealed that
VMRC-LCD cells were completely negative for YAP1, dif-
fusely positive for ASCL1, and also partially positive for chro-
mogranin A and synaptophysin (Fig. 3b, Table 3). We
examined xenograft tumors under an electron microscope, and
found dense-core granules in VMRC-LCD cells (Fig. S1).
Based on these results, we concluded that VMRC-LCD was an
LCNEC cell line, and that the loss of YAP1 correlated with
neuroendocrine features, but not with the floating phenotype.
The loss of WWTR1, LATS2, and JUB was also only observed
in VMRC-LCD cells, whereas the loss of WTIP or TEAD2
was sometimes observed among the other NSCLC cell lines
tested (Table S2).

Expression pattern of YAP1 in TMA sections of primary lung

tumors. We carried out immunohistochemistry for YAP1 using
TMA sections of 201 primary lung cancers (142

adenocarcinomas, 40 squamous cell carcinomas, 7 pleomorphic
carcinomas, 6 SCLCs, and 6 LCNECs). The results obtained
are shown in Table 4. The loss of YAP1 was rarer in
NSCLCs, except for LCNECs (6/189, 3%), than in SCLCs (5/
6, 83%) and LCNECs (3/6, 50%).

Expression patterns of YAP1 and neuroendocrine markers in

whole sections of high-grade neuroendocrine lung tumors. We
collected whole sections of high-grade neuroendocrine lung
tumors (41 SCLCs and 30 LCNECs), and carried out
immunohistochemistry for YAP1 and neuroendocrine markers.
The results obtained are shown in Table 5. Most SCLCs (40/
41, 98%) were completely negative for YAP1, except for one
case that was combined SCLC with squamous cell carcinoma
components. Eighteen of 30 LCNECs (60%) were also com-
pletely negative for YAP1, whereas 12 LCNECs showed
strong positivity for YAP1. The loss of YAP1 was signifi-
cantly more frequent in SCLCs than in LCNECs (P < 0.0001)
(Table 5). Combined SCLC/LCNEC with adenocarcinoma or
squamous cell carcinoma components frequently showed the
loss of YAP1 in the components of SCLC/LCNEC, and strong
positivity in adenocarcinoma or squamous cell carcinoma
components. Among high-grade neuroendocrine lung tumors,
the expression of YAP1 inversely correlated with that of
synaptophysin, chromogranin A, and ASCL1 (P = 0.0010,
0.0030, and 0.0264, respectively), and there were also no pos-
itive cases for synaptophysin or chromogranin A among
YAP1-positive cases (Table 5). Figure 4 shows the typical
expression patterns of YAP1 and neuroendocrine markers of
combined SCLC with adenocarcinoma components (top pan-
els), YAP1-negative LCNEC (middle panels), and YAP1-posi-
tive LCNEC (bottom panels). We speculated that the loss of
YAP1 occurs at a relatively early stage of neuroendocrine dif-
ferentiation, at least before the expression of synaptophysin
and chromogranin A, but after the expression of ASCL1
because 5 out of 13 YAP1-positive cases were positive for
ASCL1 (Table 5). The relationships between YAP1 expres-
sion and clinicopathological factors are shown in Table 6. No

Fig. 4. Top row: panels show YAP1 (left panel),
ASCL1 (center panel), and synaptophysin (right
panel) stained sections of combined small-cell lung
cancer with adenocarcinoma components using
serial sections (9100). Adenocarcinoma components
(left) were positive for YAP1 and negative for
ASCL1 and synaptophysin, whereas small-cell lung
cancer components (right) were negative for YAP1
and positive for ASCL1 and synaptophysin. Middle
and bottom panels: YAP1 (left), ASCL1 (center), and
synaptophysin (right) stained sections of YAP1-
negative and YAP1-positive large cell
neuroendocrine carcinoma (LCNEC) cases,
respectively, using serial sections (9200). The YAP1-
negative LCNEC case was positive for ASCL1 and
synaptophysin (middle panels), whereas the YAP1-
positive LCNEC case was negative for ASCL1 and
synaptophysin (bottom panels).
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clinicopathological factor correlated with the expression of
YAP1, except for sex.
Recently, Hamanaka et al.(25) reported that SCLC cases with

low neuroendocrine marker expression showed good prognosis.
In our study, some YAP1-negative SCLC cases were also neg-
ative for chromogranin A, synaptophysin, and NCAM1, and
the survival analysis revealed that neuroendocrine marker-
negative cases showed much better prognosis than neuroen-
docrine marker-positive cases among YAP1-negative cases
(Fig. S2).

Loss of YAP1 correlated with chemosensitivity in high-grade

neuroendocrine tumors. Figure 5(a) shows the results of the
survival analysis of 60 high-grade neuroendocrine tumor cases
without neoadjuvant chemotherapy. Cases with adjuvant
chemotherapy (n = 34) had slightly better prognoses than those
without (n = 26, P = 0.1559). However, among YAP1-nega-
tive cases (n = 48), cases with adjuvant chemotherapy
(n = 28) showed significantly better prognoses than those with-
out (n = 20, P = 0.0112) (Fig. 5a). Among cases with

adjuvant chemotherapy (n = 34), YAP1-negative cases
(n = 28) showed significantly better prognoses than YAP1-
positive cases (n = 6, P = 0.0477) (Fig. 5a), whereas, among
cases without adjuvant chemotherapy (n = 26), YAP1-negative
cases (n = 20) showed slightly worse prognoses than YAP1-
positive cases (n = 6, P = 0.1094) (Fig. 5a). These results sug-
gest that, among high-grade neuroendocrine tumors, YAP1-
negative cases were more chemosensitive than YAP1-positive
cases.

Positivity for YAP1 correlated with resistance to cisplatin in 10

SCLC cell lines. We examined sensitivity to cisplatin in a panel
of 10 SCLC cell lines classified into the YAP1-negative group
(n = 7) and YAP1-positive group (n = 3). In a comparison of
IC50 values for cisplatin between the YAP1-positive and
YAP1-negative groups, we found that YAP1-positive group
cell lines were significantly more resistant to cisplatin than
YAP1-negative group cell lines (P = 0.0304, Mann–Whitney
U-test) (Fig. 5b). Figure 5(c) shows the dose–response curves
of two YAP1-negative cell lines (H146 and H510A) and two
YAP1-positive cell lines (SBC5 and LCMA).

Knockdown of YAP1 induces neuroendocrine marker RAB3A.

In order to investigate the effects of the loss of function of
YAP1, YAP1-positive SCLC cell lines (SBC3, SBC5, and
LCMA) were infected with lentiviral shYAP1 and shControl.
We confirmed that the protein expression level and transcrip-
tional activity of YAP1 were reduced more by shYAP1 than
by shControl with Western blotting and luciferase assay,
respectively (Fig. 6a,b). We examined sensitivity to cisplatin
using SBC3-, SBC5-, and LCMA-shControl and shYAP1 cell
lines in order to investigate the impact of YAP1 on drug sensi-
tivity; however, reductions in the expression of YAP1 did not
improve sensitivity to cisplatin in SBC3, SBC5, or LCMA
(Fig. 6c). We then undertook a gene expression analysis by
mRNA-Seq using the SBC3-, SBC5-, and LCMA-shControl
and shYAP1 cell lines, extracted genes with signals greater
than or equal to 1 (gene data shown in Table S3), and selected
genes upregulated or downregulated by shYAP1 among all
three YAP1-positive SCLC cell lines (SBC3, SBC5, and
LCMA). Table 7 shows the top 20 genes upregulated or down-
regulated by shYAP1 depending on the average quotient of
shYAP1/shControl. We carried out a cluster analysis of the 15
high-grade neuroendocrine tumor cell lines using the genes
listed in Table 7, except for the YAP1 gene. The cell lines
were clearly classified into a neuroendocrine marker-positive
group (n = 11) and neuroendocrine marker-negative group
(n = 4) (Table S4, Fig. S3). These results suggest that the
downregulation of YAP1 affects the genes characterizing the
neuroendocrine phenotype. We extracted the genes selectively
expressed as the neuroendocrine marker-positive group or neu-
roendocrine marker-negative group (NE+ group/NE� group >3
or 1 < 3) showing positive or negative correlations with the
expression of YAP1 (correlation co-efficient >0.3 or <�0.3).
The results obtained are shown in Table 8. We found that
RAB3A was upregulated by shYAP1. RAB3A is a synaptic
vesicle-specific protein, similar to synaptophysin, is specifically
expressed in normal neuroendocrine cells and malignant neu-
roendocrine tumors, and was previously reported to be a useful
neuroendocrine marker.(26) In this report, we did not show the
immunohistochemical expression pattern of RAB3A in high-
grade neuroendocrine tumor cases, but instead we confirmed
by Western blotting that RAB3A was strongly expressed in
YAP1-negative cell lines with high expression levels of neu-
roendocrine markers (Fig. 2). We speculated that the loss of
YAP1 is involved in the neuroendocrine differentiation of lung

Table 6. Relationships between YAP1 expression levels and

clinicopathological factors in 71 high-grade neuroendocrine tumors

YAP1 expression
P-value

Positive Negative

Pathological stage†

Stage I 7 25 >0.9999

Stages II–IV 5 21

T-stage‡

T1 5 22 >0.9999

T2, T3, T4 8 35

Nodal involvement§

Positive 2 19 0.1817

Negative 10 28

Lymphatic invasion¶

Positive 2 31 0.1239

Negative 6 21

Vessel invasion††

Positive 7 40 >0.9999

Negative 1 11

Pleural invasion‡‡

Positive 10 26 0.0658

Negative 3 30

Tumor size, cm§§

<3 7 36 0.5351

≥3 6 20

Pulmonary metastasis¶¶

Positive 1 3 0.5751

Negative 12 53

Age, years

<60 1 8 >0.9999

≥60 12 50

Sex

Male 9 55 0.0183

Female 4 3

†Stages (I or II–IV) of 13 cases were unknown. ‡Pathological T-stage of
one case was unknown. §Presence or absence of nodal involvement in
12 cases was unknown. ¶Presence or absence of lymphatic invasion in
11 cases was unknown. ††Presence or absence of vessel invasion in 11
cases was unknown. ‡‡Presence or absence of pleural invasion in two
cases was unknown. §§Tumor sizes of two cases were unknown.
¶¶Presence or absence of pulmonary metastasis in two cases was
unknown. Underlined P-values are considered significant (P < 0.05).
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tumors through the upregulation of RAB3A. We noted that
ShYAP1 also downregulated the expression of AMTOL2, JUB
(AJUBA), and WTIP, which are regulators of YAP1. Using the
antibodies available for Western blotting, we confirmed that
the protein expression levels of AJUBA and AMOTL2 were
downregulated by shYAP1 (Fig. 6d). This may have been
caused by a negative-feedback mechanism. We also confirmed
that the expression of AJUBA was completely lost in the
YAP1-negative cell lines strongly expressing neuroendocrine
markers (Fig. 2).

Discussion

In the present study, we revealed that the loss of YAP1 corre-
lated with the strong expression of neuroendocrine markers,
and the knockdown of YAP1 induced the expression of the
neuroendocrine marker RAB3A, suggesting the possible
involvement of YAP1 in the regulation of neuroendocrine dif-
ferentiation. We also showed that the loss of YAP1 is a
promising predictor of chemotherapy responses in SCLC and
LCNEC cases using a panel of high-grade neuroendocrine
tumor cell lines and sections.
Yes-associated protein 1 functions as an oncogene; its overex-

pression overcomes cell contact inhibition, induces epithelial–
mesenchymal transition, and promotes cancer cell proliferation
and invasion.(12–14) The strong expression of YAP1 has fre-
quently been observed in various tumors, such as hepatocellular
carcinoma, ovarian cancer, and NSCLC,(12–16) and its overex-
pression in NSCLC has been correlated with a poor progno-
sis.(14) However, in terms of SCLC, only a few studies have
reported the tumor-suppressive function of YAP1, inducing
apoptosis in combination with p73.(17,18) Wu et al.(17) reported
that some single nucleotide polymorphisms within the promoter
region of YAP1 were associated with the downregulation of the
gene and survival of SCLC patients. Nishikawa et al.(18) found
that the downregulation of YAP1 by ASCL1 through the activa-
tion of mir375 inhibited apoptosis. However, no studies have
focused on the role of YAP1 in neuroendocrine differentiation
until now. Our analysis of 15 high-grade neuroendocrine tumor

cell lines and 41 NSCLC cell lines showed the loss of YAP1 in
all cell lines strongly expressing neuroendocrine markers. Our
immunohistochemical analysis of 71 high-grade neuroendocrine
tumors also revealed an inverse correlation between YAP1 and
neuroendocrine markers, and also that the number of YAP1-
positive and neuroendocrine marker-positive cases is more lim-
ited than negative cases. We also showed that the knockdown of
YAP1 induced the neuroendocrine marker, the RAB3A gene.
RAB3A is a synaptic vesicle-specific protein, specifically
expressed in normal neuroendocrine cells and malignant neu-
roendocrine tumors. These results suggest that YAP1 is
involved in the repression of neuroendocrine differentiation. In
this study, we did not stain carcinoid tumors for YAP1, but
could confirm that carcinoid tumors were completely negative
for YAP1 in the human protein atlas database (http://www.pro-
teinatlas.org/), which suggested that loss of YAP1 was not
specific to high-grade neuroendocrine tumors, but common in
neuroendocrine tumors.
Unlike the cell lines, there were 5 YAP1-positive and

ASCL1-positive cases among 71 cases, which suggested that
loss of YAP1 would occur after ASCL1 expression. It would
be consistent with the report that ASCL1 induced suppression
of YAP1 through mir375 in SCLC.(17) However, 16 YAP1-
negative and ASCL1-negative cases were also found among 71
cases, which suggested that, although some high-grade neu-
roendocrine tumors would lose ASCL1 expressions in the pro-
gression, the expressions of YAP1 would not be recovered.
ASCL1-induced suppression through miRNA could not effi-
ciently explain the complete loss of YAP1 in high-grade neu-
roendocrine tumors. We were suspicious of the involvement of
DNA methylation, but DNA methylation inhibitor, 5-aza-2-
deoxycytidine treatment did not upregulate YAP1 gene expres-
sion in YAP1-negative SCLC cell lines (data not shown). We
also could find no specific genetic abnormalities in the YAP1
gene in YAP1-negative SCLC cell lines by mRNA-Seq. We
need to study further to find the mechanism that causes the
loss of YAP1.
Our survival analysis of 71 high-grade neuroendocrine

tumors revealed that YAP1 is a useful marker for stratifying

Fig. 5. (a) Patient survival according to YAP1
expression levels. Patients were separated into the
following four groups: YAP1-positive cases with
adjuvant chemotherapy (YAP1+ with
chemotherapy), YAP1-positive cases without
adjuvant chemotherapy (YAP1+ without
chemotherapy), YAP1-negative cases with adjuvant
chemotherapy (YAP1� with chemotherapy), and
YAP1-negative cases without adjuvant
chemotherapy (YAP1� without chemotherapy).
Underlined P-values are considered significant
(P < 0.05). (b) Comparisons of IC50 values for
cisplatin. The upper-limit values of graphs are set to
be 10 lmol/L. Red bars indicate YAP1-positive cell
lines; black bars indicate YAP1-negative cell lines.
(c) Dose–response curves of four cell lines: H146,
H510A, LCMA, and SBC5. H146 and H510A (black
lines) were YAP1-negative small-cell lung cancer cell
lines, and LCMA and SBC5 (red lines) were YAP1-
positive small-cell lung cancer cell lines. The x-axis
indicates the log10 (concentration of cisplatin) and
the y-axis indicates cell viability = (mean
absorbance in test wells)/(mean absorbance in
control wells). H146 and H510A were sensitive to
cisplatin (IC50 = 0.8573 and 1.698, respectively),
while LCMA and SBC5 were resistant (IC50 = 58.69
and 25.48, respectively).
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high-grade neuroendocrine tumors into chemosensitive and
chemoresistant groups. Our survival curves in Figure 5(a) also
showed that, among YAP1-positive cases, the adjuvant
chemotherapy group had a slightly worse prognosis than the
non-adjuvant chemotherapy group, which suggested that
adverse drug reactions may exceed the beneficial effects of
platinum-based chemotherapy in YAP1-positive high-grade
neuroendocrine tumors. Recently, YAP1 has been attracting
attention as a key molecule to determine the resistance of vari-
ous tumors to platinum, including NSCLC, oral cancer, cervi-
cal cancer, thyroid cancer, and ovarian cancer.(27–30) Cheng
et al.(26) showed that the downregulation of YAP1 by

verteporfin (a YAP1 inhibitor) sensitized cells to DNA-dama-
ging agents.
In the present study, the knockdown of YAP1 by shYAP1

did not induce sensitivity to cisplatin, and also did not induce
neuroendocrine markers other than the RAB3A gene in YAP1-
positive SCLC cell lines. These results suggest that the knock-
down of YAP1 is necessary, but not sufficient for inducing
neuroendocrine differentiation. WWTR1 (TAZ), YAP1 homo-
logue, was also lost in neuroendocrine marker-positive cell
lines. Interestingly, the expression levels of STMN2 (SCG10),
one of the regulators of neuroendocrine secretion,(31) increased
more than 3-fold only in SBC5, the YAP1-positive and

Fig. 6. (a) SBC3, SBC5, and LCMA cell lines were infected with a lentivirus encoding the indicated shYAP1 or the control. Drug-selected cells
were examined for the expression of YAP1 and GAPDH by immunoblotting. (b) Luciferase assay to monitor the transcriptional activity of YAP1
using a PGLIII/TEAD2-Luciferase plasmid and the Renilla luciferase plasmid pRL-TK as an internal control. The transcriptional activity of YAP1 was
downregulated more by shYAP1 than by shControl. (c) Dose–response curves of SBC3, SBC5, and LCMA cell lines infected with a lentivirus encod-
ing the indicated shYAP1 (black line) or control (red line). The x-axis indicates the log10 (concentration of cisplatin), and the y-axis indicates cell
viability = (mean absorbance in test wells)/(mean absorbance in control wells). (d) Western blot analysis of protein expression levels of AMOTL2
and AJUBA using SBC3-shControl, SBC3-shYAP1, SBC5-shControl, SBC5-shYAP1, LCMA-shControl, and LCMA-shYAP1 cell lines.
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WWTR1-negative SCLC cell line, by shYAP1 treatment, and
high-level expressions of STMN2 were characteristically shown
in neuroendocrine marker-positive SCLC cell lines (data not

shown). These results suggested that suppression of both of
YAP1 and WWTR1 might be important for inducing neuroen-
docrine differentiation. We did not focus on TEAD2 in this
report, but the cell lines with high level expressions of neu-
roendocrine markers characteristically showed complete loss of
TEAD2 gene expression. TEAD2 is transcription factor corre-
lated with neuronal development.(32) We need to elucidate
each role of YAP–TEAD1-4 or WWTR1–TEAD1-4 complex-
mediated transcription, to reveal the meaning of loss of
WWTR1 and TEAD2 in SCLC; this will be the focus of our
future study.
Recently, YAP1 has been reported to inhibit the squamous

differentiation of LKB1-deficient lung adenocarcinomas.(33)

YAP1 must be a key regulator of differentiation, and searching
for genetic changes in addition to the loss of YAP1 that induce
neuroendocrine differentiation will help to elucidate its mecha-
nism of action.
In summary, the loss of YAP1 may define a unique subset

of high-grade neuroendocrine tumors. These tumors strongly
express neuroendocrine markers and show chemosensitivity.

Acknowledgments

This study was supported in part by the Japan Society for the Promo-
tion of Science (KAKENHI grant nos. 16K08672, 90198424,
25460432, and 30182108), Grants for Research on Human Genome
Tailor-made from the Ministry of Health, Labor, and Welfare of Japan,
the Smoking Research Foundation, and the Foundation for the Devel-
opment of the Community.

Disclosure Statement

Matsubara Daisuke supported by the Smoking Research Foundation.

Abbreviations

AMOTL2 angiomotin-like 2
ASCL1 Achaete-scute homolog 1
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CBDCA carboplatin
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LATS1/2 large tumor suppressor 1/2
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mir miRNA
mRNA-Seq mRNA sequencing
NCAM neural cell adhesion molecule
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