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The Cancer Dependency Map enables
drug mechanism-of-action investigations
Francisca Vazquez* & Jesse S Boehm**

How do small molecules exert their effects
in mammalian cells? This seemingly simple
question continues to represent one of the
fundamental challenges of modern trans-
lational science and as such has long been
the subject of intense scientific scrutiny.
In their recent study, Garnett and collea-
gues (Gonçalves et al, 2020) demonstrate
proof-of-concept for a new way to attack
this problem systematically for Oncology
drugs, by identifying correlated CRISPR-
and drug-killing profiles in the Cancer
Dependency Map dataset.
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See also: E Gonçalves et al (2020)

D eciphering the mechanism(s)-of-

action (MoA) by which small mole-

cules act in human cells is key to

identifying why patients do or do not

respond to treatment, for developing next-

generation molecules with improved efficacy

and selectivity and for identifying and

preempting mechanisms of resistance. Yet,

doing so is highly challenging.

For small molecules emerging from target-

based discovery campaigns, it is assumed

that the answer revolves around the biochem-

ical perturbation of the target. Despite this

assumption, polypharmacological effects may

play significant roles. Reciprocally, small

molecules that emerge from phenotypic cellu-

lar-based screens have historically required

laborious biophysical approaches to unmask

their MoA. A highly cited example is the

elegant discovery of the MoA of the natural

product rapamycin: the FKBP12 protein

that disrupts mTOR signaling (Brown et al,

1994).

In the case of cancer, several promising

new genomic frontiers are now emerging

that are beginning to accelerate progress in

MoA. First, the use of genetic RNAi or

CRISPR modifier screens to identify rescue

or sensitization to anti-cancer drug killing

has been a powerful approach (Jost & Weiss-

man, 2018; Colic et al, 2019). Second, the

use of gene expression and/or high content

imaging as a surrogate measurement has

enabled the assessment of “connectivity” in

signature space (e.g., between a known

perturbation and that of a small molecule)

(Subramanian et al, 2017). Despite these

advances, such approaches are typically

limited to specific cancer contexts.

But can the power of CRISPR be lever-

aged to resolve the MoA of a small molecule

for cancer systematically across a wide

diversity of cellular contexts? This question

is the focus of Gonçalves et al, reported in

the current issue of Molecular Systems Biol-

ogy. The authors hypothesize that a small

molecule and a CRISPR genetic knockout

that exert the same pattern of killing across

cancer cell line models are likely to function

through similar mechanisms.

To address this hypothesis, the authors

leverage recently emerging data from the

Cancer Dependency Map (depmap.org; de

pmap.sanger.ac.uk) in which hundreds of

molecularly characterized cancer cell line

models have been similarly subjected to

genome-wide RNAi or CRISPR (Tsherniak

et al, 2017; Behan et al, 2019) and pharmaco-

logical (Iorio et al, 2016) profiling. These data

have recently been found to be highly repro-

ducible across institutions, suggesting an

opportunity for integration to increase power.

The premise in this proof-of-concept

manuscript that focuses on established

cancer drugs with largely known MoAs is

that the correlation in viability between one

of � 17,000 genetic knockouts and one of

397 established drugs across 484 diverse cell

lines should rediscover the MoA. While

examples of success have been reported, a

broad-scale study of this new use of the

Cancer Dependency Map data has only

become possible recently.

Through an extensive series of supervised

linear regression analyses, they demonstrate

the merits of this approach. They find that in

26% of cases, the killing pattern of the drug

is directly phenocopied by the CRISPR killing

pattern of the known drug target. They

investigate the 264 cases in which this is not

the case and find, using protein–protein

interactions, 76 additional examples in

which the small molecule’s killing pattern

correlates with a first, second, or third order

interactor. Thus, in aggregate, the authors

conclude that either the target or pathway

can be rediscovered in roughly 48% of cases.

The authors next investigate some inter-

esting examples. For instance, in the exam-

ple of isoform-specific PI3K inhibitors, the

expected genetic knockdowns indeed corre-

late. In the case of MCL1 inhibition, they

discover an exciting relationship between

the MARCH5 E3 ligase and MCL1 inhibition.

This finding has now been confirmed by

other groups including reports of the

MARCH5-dependent degradation of the

MCL1/NOXA complex. This discovery

should prove very interesting for the thera-

peutic exploitation of the MCL1 dependency

in many human cancers.

Finally, the authors explore concordant

biomarkers that explain the sensitivity of

both genetic and small molecule perturba-

tions. They show how these biomarkers can
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inform MoA, along the lines of previous

work focused on small molecules (Rees

et al, 2015). For instance, the authors iden-

tify tumor necrosis alpha expression as a

robust biomarker of sensitivity to both cIAP

inhibitors as well as genetic knockout of

members of the cIAP pathway.

This manuscript shares some similarities

to a recent report (Corsello et al, 2020) that

together lay out the exciting potential to

resolve the MoA of small molecules in a

new way, using the Cancer Dependency

Map (Fig 1). One limitation in the current

report is the focus on established anti-cancer

drugs, which have potent efficacy and (typi-

cally) highly refined MoA. Thus, while this

is a useful proof-of-concept, it is unclear ulti-

mately how the approach will work where

the real MoA challenge is, which is for

compounds in development, in which the

drug-killing effect is weaker and often less

specific.

Additionally, the regression methods

used in this paper may not fully account for

the notion that most small molecules have

diverse polypharmacological effects that

together may conspire to explain the
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Figure 1. Using the Cancer Dependency Map data to generate MoA hypotheses.

(A) By profiling hundreds of patient models of human cancer, the Cancer Dependency Map systematically identifies gene dependencies, small molecule sensitivities, and the
markers that predict their response. (B) Correlations of genetic dependencies and drug sensitivities across cell lines can inform small molecule target(s) identification and
mechanism-of-action. Red bars: cell killing; blue bars: no cell killing.
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mechanism of killing across various cellular

contexts. As the scale of the Dependency

Map dataset grows, future computational

approaches may be leveraged to produce

consensus matches that aggregate individual

targets in more complex ways.

With these caveats aside, this report

provides new insight into how valuable the

Cancer Dependency Map is likely to be as a

reference to guide MoA studies throughout

the drug discovery process (Fig 1). In the

years ahead, it will be important for the field

to aspire to learn generalizable lessons

around the strengths and weaknesses of

various experimental and computational

modalities to finally solve this important

challenge for oncology once and for all.
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The prospect of repurposing existing drugs for new clinical 
indications is alluring: rapid clinical translation can occur for 
drugs already proven safe in humans. In principle, existing 

drugs can also establish starting points for drug development when 
new targets of old drugs are discovered. To date, most oncology 
repurposing discoveries have been serendipitous; systematic, at-
scale screening of the entire pharmacopoeia has not been feasible. 
The extent to which non-oncology drugs have potential as future 
cancer therapeutics is unknown.

However, recent efforts have demonstrated the power of large-
scale cancer cell line screening—testing either many compounds 
across a limited number of cell lines (for example, the NCI-60 
panel1) or a modest number of oncology compounds across many 
cell lines (for example, the Genomics of Drug Sensitivity in Cancer 
(GDSC) project at the Sanger Institute2 and the Cancer Target 
Discovery and Development (CTD2) project at the Broad Institute3; 
Fig. 1a). The ideal study would involve screening many drugs (most 
of which are non-oncology drugs) across a large panel of genomi-
cally characterized cell lines to capture the molecular diversity of 
human cancer.

In this study, we report the feasibility of using the PRISM molec-
ular barcoding and multiplexed screening method to test 4,518 

existing drugs against 578 cancer cell lines. We find that non-oncol-
ogy drugs have an unexpectedly high rate of anticancer activity.  
The sensitivity of cancer cell lines to many of these compounds  
can be predicted from the genomic features of the cell lines, thereby 
suggesting potentially relevant patient populations.

Results
Drug selection and PRISM profiling. To facilitate the screening 
of thousands of compounds across hundreds of cell lines, we used 
the PRISM method. Cancer cell lines are labeled with unique DNA 
sequences, thereby allowing barcoded cell lines to be pooled with 
relative barcode abundance serving as a surrogate for cellular via-
bility4 (Fig. 1b). We screened 578 adherent cell lines spanning 24 
tumor types (Extended Data Fig. 1a and Supplementary Table 1).

We chose 4,518 drugs from the Drug Repurposing Hub5 (https://
www.broadinstitute.org/repurposing) and confirmed the identity 
and purity of all compounds to be greater than 75% pure by liq-
uid chromatography–mass spectrometry (LC–MS) (Supplementary 
Table 2); 3,350 of the compounds (74%) are either approved for clin-
ical use in the USA or Europe, or are in clinical development. The 
remaining 1,168 (26%) are tool compounds with known activities. 
Most compounds, 3,466 (77%), were non-oncology-related, with 
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the remaining compounds being either chemotherapeutics (2%)  
or targeted oncology agents (21%).

Screening results. We employed a 2-stage screening strategy 
whereby drugs were first screened in triplicate at a single dose 
(2.5 µM); 1,448 drugs screening positives were then rescreened in 
triplicate in an eight-point dose–response ranging from 10 µM to 
610 pM (Fig. 1c and Supplementary Table 2). Interestingly, most 
active compounds (774 out of 1,448, 53%) were originally devel-
oped for non-oncology clinical indications (Fig. 1d). The primary 
and secondary screening datasets are available on the Cancer 
Dependency Map portal (https://depmap.org/repurposing) and  
figshare (https://doi.org/10.6084/m9.figshare.9393293; Extended 
Data Figs. 1–4). We compared the PRISM results to two gold stan-
dard datasets: GDSC (ref. 2) and CTD2 (ref. 3). The three datasets 
shared 84 compounds tested on a median of 236 common cell lines, 
yielding 16,650 shared data points. The PRISM dataset had a similar 
degree of concordance to GDSC and CTD2 (Pearson correlations of 
0.60 and 0.61, respectively over all shared data points), as the GDSC 
and CTD2 datasets had to each other (Pearson correlation 0.62) 
(Extended Data Fig. 5a). The three datasets remained similarly con-
cordant when the analysis was restricted to data points showing evi-
dence of anticancer activity (Extended Data Fig. 5b). We conclude 
that, despite differences in assay format, sources of compounds5 and 
sources of cell lines6, the PRISM Repurposing dataset is similarly 
robust compared to existing pharmacogenomic datasets.

At the level of individual compound dose–responses, we note that 
the PRISM Repurposing dataset tends to be somewhat noisier, with a 
higher standard error estimated from vehicle control measurements 

(Extended Data Fig. 5c and Extended Data Fig. 6a–c). This variation 
may be explained by a combination of longer assay duration, smaller 
number of cells assayed and/or variation attributable to growing  
cells in pools. However, such noise was not substantial enough to 
preclude the discovery of anticancer activities or their associated 
predictive biomarkers (see further on).

Landscape of non-oncology drug effects on cancer viability.  
We performed unsupervised clustering of compound viability pro-
files independent of their functional annotations using the uniform 
manifold approximation and projection (UMAP) method7 (Fig. 2a;  
interactive plot available at https://depmap.org/repurposing). 
Compounds with similar mechanisms of action tended to cluster 
together, indicating that expected activities were recovered by the 
PRISM assay. Interestingly, while we expected to recover known 
mechanisms of action for cancer drugs, we also found clusters of 
functionally related noncancer drugs, such as vitamin D receptor 
agonists and 3-hydroxy-3-methylglutaryl-coenzyme A reductase 
inhibitors. Of note, some functionally related classes (for example, 
glucocorticoid receptor agonists) showed two or more distinct clus-
ters, suggesting that biologically relevant substructures may exist 
within the dataset.

In general, chemotherapeutics killed the highest number of cell 
lines and non-oncology drugs the lowest, with targeted oncology 
drugs being intermediate (Fig. 2b). However, this pattern was highly 
dose dependent. At high doses, targeted agents lost their selectivity. 
Perhaps most interestingly, a subset of non-oncology drugs showed 
particularly potent activity: 91 drugs killed at least 1% of cell lines at 
a concentration of 625 nM or lower.
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To further investigate the therapeutic potential of non-oncol-
ogy drugs, we computed the bimodality coefficient8 of each com-
pound’s dose-wise viability profile (Extended Data Fig. 6d and 

Supplementary Table 3) and then calculated the maximum for each 
compound. While non-oncology drugs showed less bimodality than 
cancer drugs on average (Fig. 2c), the most selective compounds in 
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the dataset include non-oncology drugs (Fig. 2d). This provides fur-
ther evidence that large-scale testing of noncancer drugs can reveal 
selective anticancer activity.

Predictive models of killing activity. We next addressed the extent 
to which cell-killing activity was predictable based on the genomic 
features of cell lines. For each drug, we used the random forest-
based ATLANTIS algorithm9, which employs the baseline molecu-
lar features (cell lineage; gene copy number; function-damaging, 
hotspot or missense mutations; DNA methylation levels; mes-
senger RNA, microRNA, protein or metabolite abundance) and 
genetic dependencies (genome-scale CRISPR–Cas9 knockout or 
RNA interference) as inputs to the model10–14. Most of the highly 
predictable killing profiles came from targeted oncology drugs, 
compared to chemotherapeutics or non-oncology drugs (Fig. 2e 
and Supplementary Tables 4 and 5). This is not surprising, since 
targeted oncology drugs have been optimized for their selective kill-
ing of subtypes of cancer. More striking was the observation that a 
substantial number of non-oncology drugs had highly predictable 
patterns of killing (38 with a Pearson score > 0.4 in the secondary 
screen; Fig. 2f).

Interestingly, mRNA expression was by far the most predictive 
feature type compared to other categories of genomic information 
(Fig. 3a). This observation is consistent with the findings of other 
pharmacogenomic screens15,16 as well as short hairpin RNA-based 
functional genomic screens9. By contrast, Iorio et  al.17 reported 
that mutation, not gene expression, was most predictive of drug 
response within a cancer type. Whether that is explained by their 
focus on known cancer drugs (for example, kinase inhibitors), as 
opposed to all classes of drugs analyzed in the present dataset, is 
to be determined. Importantly, only rarely (in 0.8% of cases) did 
the pattern of killing by active non-oncology drugs correlate with 
knockout or knockdown of the drug’s intended target (versus 15.0% 
of active oncology drugs; Fig. 3b and Supplementary Table 6). This 
suggests that the unexpected anticancer activity of non-oncology 
drugs is most probably explained by a previously unrecognized 
mechanism of action.

In the primary screen, 195 non-oncology drugs had predictable 
killing with a Pearson score > 0.2, and 23 were predictable with a 
Pearson score > 0.4. This same phenomenon of highly predictable 
non-oncology drug killing was observed when predictability was 
plotted against the bimodality score (Fig. 4). The most predictable, 
bimodal non-oncology drugs (right plot; upper right-hand quad-
rant; Supplementary Tables 3 and 4) represent the drugs of greatest 
interest for future mechanistic follow-up. We describe four of these 
compounds in the sections that follow.

Inducers of PDE3A–SLFN12 protein–protein interaction. Among  
the genomic features most highly correlated with non-oncology 
drug activity was the expression of the gene PDE3A, whose expres-
sion correlated with killing by 11 structurally diverse compounds. 
These included the known phosphodiesterase 3A (PDE3A) inhibi-
tors anagrelide and zardaverine, progesterone receptor agonists 
(including the nonsteroidal drug tanaproget), the kinase inhibitor 
AG-1296 and the potassium channel activator DCEBIO (Fig. 5a). 
This pattern of killing was of interest because of the recent report 
of cancer cytotoxicity occurring as a result of protein–protein 
interaction between PDE3A and the largely uncharacterized pro-
tein Schlafen 12 (SLFN12; (ref. 18)). We found that the structurally 
diverse compounds identified in the PRISM screen bound PDE3A 
in a thermal shift assay (Fig. 5b and Supplementary Table 7) and 
inhibited PDE3A enzymatic activity (Supplementary Table 7). Their 
cytotoxicity was completely rescuable by either PDE3A knockout 
or by competition with trequinsin, a potent PDE3A small-mole-
cule inhibitor that does not induce PDE3A–SLFN12 interaction18  
(Fig. 5c). Importantly, PDE3A pull-down resulted in coimmuno-
precipitation of V5-tagged SLFN12 following compound treatment, 
indicating that these compounds indeed induced PDE3A–SLFN12 
protein–protein interaction (Fig. 5d). We consistently observed 
that, while complex formation predicts compound sensitivity, the 
strength of the PDE3A–SLFN12 interaction does not directly corre-
late with HeLa cell line half maximal inhibitory concentration (IC50; 
Fig. 5d and Supplementary Table 7). Taken together, the PRISM 
results show that an unexpectedly large number of structurally  
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diverse non-oncology drugs kill PDE3A-expressing cancer cells 
by stabilizing the PDE3A–SLFN12 interaction. While these com-
pounds have limited potency, they may prove useful as starting 
points for further medicinal chemistry optimization of this anti-
cancer mechanism.

Predictive biomarkers of disulfiram activity. An intriguing obser-
vation was the association of killing by disulfiram, an inhibitor of 
acetaldehyde dehydrogenase used to treat alcohol dependence, and 
chromosome 16q copy number. Examination of the relevant region 
of 16q (ref. 19) revealed that both copy number loss and low expres-
sion of the metallothionein-encoding genes MT1E and MT2A were 
correlated with disulfiram-induced cell killing (Pearson correlations 
of 0.33 and 0.23, respectively across 560 lines; Fig. 6a). Disulfiram 
has been previously suggested as an anticancer agent20 and at least 
one clinical trial has shown hints of efficacy in lung cancer when 
used in combination with chemotherapy21. In the absence of a pre-
dictive biomarker, the magnitude of clinical benefit did not warrant 
further clinical investigation.

Our finding that the metallothionein-encoding genes MT1E and 
MT2A on 16q are predictive of disulfiram activity is mechanisti-
cally plausible: disulfiram’s activity is copper-dependent, and MT1E 
and MT2A are known metal-chelating proteins22. Consistent with 
this observation, MT1E and MT2A expression was also correlated 
with sensitivity to thiram and elesclomol, other copper-binding 
compounds23,24. In addition, disulfiram has been reported to induce 
metallothionein gene expression in prostate cancer cells25.

To test the hypothesis that metallothionein expression regulates 
disulfiram’s anticancer activity, we used the disulfiram-resistant 
glioma cell line SF295, which has an amplification of chromosome 
16q and high metallothionein expression. To inhibit the expression 
of multiple metallothionein genes simultaneously, we knocked out 

the transcription factor MTF1, which is a known upstream regu-
lator of metallothionein gene expression (Extended Data Fig. 7a;  
ref. 22). Following MTF1 knockout, metallothionein genes were 
among the most downregulated as assessed by global mRNA 
sequencing (Extended Data Fig. 7b). As predicted, MTF1 knock-
out resulted in increased sensitivity of SF295 cells to disulfiram; 
this increased sensitivity could be completely reversed by the  
copper chelator tetrathiomolybdate (TTM; Fig. 6b). MTF1 knock-
out did not alter sensitivity to control bortezomib (Extended  
Data Fig. 7c). These results together suggest that 16q deletion is 
a potential predictive biomarker of disulfiram and other copper-
dependent cytotoxic agents. This finding is clinically relevant 
because arm-level 16q loss is seen in many tumor types, most nota-
bly breast and ovarian cancers, where its prevalence is estimated at 
55–65% and 55–76%, respectively26–28.

Vanadium-containing compounds. The PRISM screen revealed 
a strong correlation between killing by the vanadium-containing 
drug bis(maltolato)oxovanadium(IV) (BMOV) and expression 
of the sulfate transporter SLC26A2 (Pearson correlation −0.583, 
ATLANTIS Pearson score 0.620; Fig. 6c). Bioavailable vanadium-
containing compounds, including BMOV and bis(ethylmaltolato)
oxovanadium(IV) (BEOV), have been of interest for their ability to 
lower fasting blood glucose in animal models and in patients with 
diabetes29,30. SLC26A2 function has not been extensively studied, but 
loss-of-function mutations have been associated with connective tis-
sue disorders31,32. In cancer, SLC26A2 is broadly expressed at modest 
levels, with high expression in melanoma and uterine cancers33.

The mechanistic relationship between BMOV and SLC26A2 
expression is not obvious. Arguing against BMOV being an inhibi-
tor of SLC26A2 function, analysis of publicly available genome-wide 
CRISPR–Cas9 loss-of-function screens indicates that SLC26A2 
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is not a cancer dependency (see https://depmap.org). Consistent 
with this, knockout of SLC26A2 in the BMOV-sensitive cell line 
OVISE was tolerated (Extended Data Fig. 7d,e). However, SLC26A2 
knockout rendered OVISE cells resistant to both BMOV and BEOV, 
indicating that SLC26A2 is not simply a biomarker of killing, but is 
required for compound activity (Fig. 6d). The cytotoxicity of other, 
structurally distinct vanadium-containing compounds was simi-
larly rescued by SLC26A2 knockout, suggesting that the vanadium 
oxide ion is responsible for the SLC26A2-dependent cytotoxicity  
of BMOV (Fig. 6e). It remains to be determined whether these  

compounds are substrates for the SLC26A2 transporter, inter-
fere with sulfate ion homeostasis or confer a previously unknown  
function to SLC26A2.

Tepoxalin and multidrug resistance. Expression of metabolic 
enzymes or drug efflux pumps were among the most common 
predictive biomarkers of drug response in the PRISM screen. As 
expected, high mRNA expression of the gene encoding the ABCB1 
transporter (also known as multidrug resistance protein 1 (MDR1) 
or p-glycoprotein 1) was the top predictor of resistance to numerous 
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oncology drugs, including taxanes (docetaxel and paclitaxel), vinca 
alkaloids (vincristine and vinorelbine) and proteasome inhibitors 
(carfilzomib) (Fig. 7a).

An unexpected finding, however, was that a single drug, tepoxa-
lin, had the opposite relationship to ABCB1: high ABCB1 expression 
predicted sensitivity to tepoxalin. Tepoxalin is a dual cyclooxygenase 
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and 5-lipoxygenase inhibitor that is Food and Drug Administration-
approved for the treatment of osteoarthritis in dogs34,35. Because 
more than 100 other cyclooxygenase and/or 5-lipoxygenase inhibi-
tors were also tested in our PRISM screen, we asked whether they 
shared the ABCB1-associated killing effect. Strikingly, none of them 
did, suggesting that tepoxalin’s killing was most probably explained 
by an off-target mechanism. Consistent with this hypothesis, tepox-
alin’s killing activity was not correlated with the genetic knockout 
profiles of its known targets PTGS1, PTGS2 and ALOX5.

To gain insight into the mechanism by which tepoxalin selectively 
inhibits cancer cells, we performed a genome-wide CRISPR–Cas9 

modifier screen to identify the genes required for tepoxalin-medi-
ated activity. LS1034 colorectal cancer cells have high levels of ABCB1 
expression and are inhibited by tepoxalin with an IC50 of 3.8 µM. 
Cas9-expressing LS1034 cells were infected with a pooled library 
containing 76,441 single guide RNAs (sgRNAs) targeting 19,114 
genes and treated with 16 µM tepoxalin (or vehicle control) for 28 d. 
Remarkably, the gene knockout most enriched in tepoxalin-resis-
tant cells was ABCB1 itself (Fig. 7b). Other resistance hits included  
multiple components of the SWI/SNF complex (SMARCA4, 
SMARCB1 and ARID1A), which has been previously implicated in 
the regulation of ABCB1 gene expression36.
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To complement the CRISPR–Cas9 loss-of-function screen, we 
performed a genome-wide CRISPR activation screen to identify 
genes whose overexpression was selected against in the setting of 
tepoxalin treatment. The gene showing the most negative selec-
tion was also ABCB1, indicating that its overexpression sensitizes 
cells to tepoxalin (Fig. 7c). Consistent with these findings, cellular 
competition and dose–response assays revealed strong selection 
for tepoxalin-treated ABCB1-null cells compared to wild-type cells 
(Fig. 7d, Extended Data Fig. 7f–h and Supplementary Table 8). 
Overexpression of ABCB1 in a low-expressing, tepoxalin-insensi-
tive cell line resulted in increased drug sensitivity (Extended Data 
Fig. 8a,b). Furthermore, potent ABCB1 small-molecule inhibitors 
did not phenocopy tepoxalin in the PRISM assay and in fact antago-
nized tepoxalin-induced killing, suggesting that ABCB1 inhibition 
alone does not explain tepoxalin’s anticancer activity (Extended 
Data Fig. 8c,d).

Given that ABCB1 encodes a drug transporter, we next asked 
whether ABCB1 expression affected intracellular concentrations of 
tepoxalin. However, LC–MS experiments indicated that intracellu-
lar concentrations of tepoxalin were unaffected by levels of ABCB1 
expression or by ABCB1 small-molecule inhibition (Extended Data 
Fig. 8e). Tepoxalin is also known to be metabolized to a compound 
known as RWJ20142 by conversion of its hydroxamic acid to a car-
boxylic acid37. RWJ20142 is generated in the presence of serum but 
not saline or acetonitrile (Extended Data Fig. 8f). Unlike tepoxa-
lin, RWJ20142 was not cell permeable and showed no inhibition 
of ABCB1-expressing cancer cells. Although tepoxalin inhibited 
ABCB1 at high concentrations (Extended Data Fig. 8g,h), our 
results indicate that tepoxalin does not kill cancer cells simply by 
inhibiting ABCB1 activity. Taken together, these results suggest that 
tepoxalin, but not its metabolite RWJ20142, inhibits ABCB1 high-
expressing cancer cells via an ABCB1-mediated mechanism that 
remains to be fully elucidated.

Discussion
We developed the PRISM Repurposing dataset as a large-scale 
resource containing the anticancer activity of non-oncology drugs. 
The PRISM screen recovered 49 non-oncology compounds with 
selective and predictive biomarker-associated anticancer activity 
(Pearson score > 0.2, bimodality coefficient > 0.4) and 103 with a 
less stringent bimodality coefficient cutoff (>0.35). Of note, six non-
oncology compounds (Fig. 4) showed selective (bimodal) killing 
patterns, but their activity was unpredictable based on the baseline 
genomic features of the cell lines. It is possible that an expansion of 
the number of cell lines in the PRISM panel will help identify such 
biomarkers. Alternatively, killing might be explained by molecular 
features not yet measured in the cell lines.

It is conceivable that some non-oncology drugs could be brought 
directly to clinical trials for testing in cancer patients. However, before 
doing so, it is important to establish that the killing activity of such 
drugs is observed at concentrations that are achievable and tolerable 
in humans. Similarly, it is important to confirm that the predictive 
biomarkers identified in cell lines represent distinct populations of 
human tumors in vivo. It is probable that most of the observations 
described in this study will not be suitable for immediate testing in 
humans; either the biomarker hypothesis will require further refine-
ment or the compounds themselves will require further optimization.

In contrast to immediate repositioning of existing drugs for new 
indications, the PRISM results reported in this study also represent 
starting points for new drug development. When the anticancer 
activity of a drug occurs via an off-target mechanism, it is prob-
able that further optimization for this new target will result in more 
potent and selective drug candidates. We note that the use of cell-
based screens such as PRISM allows for the discovery of previously 
unknown mechanisms of action that would be difficult to discover 
using conventional biochemical screening assays.

We initiated follow-up studies on four of the initial findings 
from the PRISM screen. In the case of disulfiram, we discovered 
a previously unrecognized biomarker (16q deletion) that predicts 
sensitivity. Future work will require extending such studies to the 
in  vivo setting and determining whether sufficiently high disulfi-
ram concentrations can be achieved to obtain anticancer effects. 
The accessibility of copper in different organs and cell types prob-
ably also modulates disulfiram’s anticancer activity. Compounds 
with remarkable chemical diversity kill PDE3A high-expressing 
cancer cell lines. They all induced PDE3A–SLFN12 complex forma-
tion, as has been described for the compound DNMDP18. A struc-
tural understanding of the interaction of these diverse compounds 
with PDE3A will probably inform future optimization of PDE3A–
SLFN12-directed cancer therapeutics. Our finding that vanadium-
containing compounds selectively kill cancer cells expressing high 
levels of the sulfate transporter SLC26A2 was also surprising, given 
that a mechanistic link between the two had not been previously 
suspected. A recent study showed that SLC26A2 expression is a 
mechanism of resistance to TNF-related apoptosis-inducing ligand-
induced cell death38; it remains to be determined whether that 
mechanism is relevant to vanadium-induced killing and whether 
these compounds dysregulate sulfate homeostasis. Perhaps most 
interesting was our observation that the drug tepoxalin has the 
unique ability to inhibit cells that express high levels of the mul-
tidrug resistance gene ABCB1. While tepoxalin was originally 
developed as a cyclooxygenase/5-lipoxygenase inhibitor, our struc-
ture–activity relationship studies clearly showed that tepoxalin’s 
anticancer activity is probably cyclooxygenase- and 5-lipoxygenase-
independent. While we showed that ABCB1 is both necessary and 
sufficient to confer tepoxalin cytotoxicity, the precise mechanism 
by which such cell death occurs is to be established. Further opti-
mization of tepoxalin against this new target, and engineering out 
the drug’s cyclooxygenase/5-lipoxygenase inhibitory activity, would 
probably result in improved tolerability as an anticancer agent.

Historically, a challenge with cell-based phenotypic screens is the 
difficulty in gaining molecular insight into the mechanism of action 
of hit compounds. However, our results in the present study dem-
onstrate the power of genome-scale CRISPR–Cas9 loss-of-function 
and gain-of-function screens to provide mechanistic clues to small-
molecule action. For example, both CRISPR knockout and CRISPR 
activation screens pointed to ABCB1 as the most relevant target 
of tepoxalin. The availability of such functional genomic screen-
ing methods will probably reinvigorate cell-based screening more 
broadly. We also note that, whereas small molecules are typically 
thought of as inhibitors of their protein targets, our PRISM results 
indicate that this is often not the case. For example, we discovered 
compounds that stabilize protein–protein interaction (for example, 
PDE3A–SLFN12) and that engage ABCB1 but do not kill cells by 
ABCB1 inhibition. A plethora of noninhibitory small-molecule 
activities probably remains to be discovered from this PRISM data-
set. However, we note that when anticancer drug targets are not 
themselves cancer dependencies, it is possible that strong selective 
pressure will result in downregulation of the target protein, result-
ing in drug resistance. Such drug resistance could presumably be 
overcome through combination drug treatment, as is the norm for 
most types of cancer.

The PRISM barcoding and pooling approach described in this 
study substantially increases screening efficiency, but it is conceiv-
able that the pooling of cell lines results in paracrine-mediated 
mechanisms that modulate drug sensitivity. In practice, however, 
we have yet to observe such cell–cell interactions or any consistent 
discordance between PRISM and one-by-one viability profiling. 
Nevertheless, we and others have reported the existence of micro-
environment-mediated drug resistance mechanisms39; the potential 
for such interactions should be considered when interpreting the 
PRISM results.
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The PRISM Repurposing dataset described in this study rep-
resents nearly half of all drugs ever tested in humans. Given the 
large number of unexpected findings that emerged from this initial 
screen, we believe that expansion of the PRISM resource in both the 
dimension of drugs and cancer models is warranted. Such data will 
provide an important pharmacological component of the Cancer 
Dependency Map (https://depmap.org), which in turn will form a 
preclinical foundation for cancer precision medicine.

Methods
Cell lines. Parental cell lines were obtained from the Broad Institute-Novartis 
Institutes for BioMedical Research Cancer Cell Line Encyclopedia (CCLE) 
project10 before PRISM barcoding (see https://portals.broadinstitute.org/ccle for 
the original sources). For the follow-up studies, LS1034, HeLa and HEK293T cells 
were purchased from the ATCC. The REC1, SF295, OVISE, COLO 320, HT-29 and 
SNU-449 cell lines were provided by CCLE. Wild-type and ABCB1-overexpressing 
(pLX_317 vector) Kuramochi cell lines were gifts from E. Stover40. HeLa PDE3A 
CRISPR knockout cells (PDE3A−/− cells) were described previously18. LS1034, 
SF295, COLO 320, SNU-449 and OVISE cell lines derived with Cas9 were provided 
by the Cancer Dependency Map (Broad Institute). Short tandem repeat (STR) 
fingerprinting was performed by Genetica using the PowerPlex 16 HS system 
(Promega Corporation). STR profiles were compared with STR profiles reported by 
vendors and in literature. Misidentified cell lines or other STR conflicts are listed 
in Supplementary Table 9. These cell lines are flagged in the data files and are not 
shown by default in the website interface. Cell lines were confirmed to be negative 
for Mycoplasma using the MycoScope PCR Mycoplasma Detection Kit (Genlantis). 
The LS1034, REC1, OVISE, SF295, COLO 320, SNU-449 and Kuramochi cell lines 
were cultured in Roswell Park Memorial Institute (RPMI) medium (Thermo Fisher 
Scientific). HeLa cells were cultured using DMEM (Thermo Fisher Scientific).  
All media were supplemented with 10% heat-inactivated FCS (Sigma-Aldrich) and 
1% penicillin-streptomycin G (Thermo Fisher Scientific) except for the HEK293T 
cell line, which was maintained without antibiotics.

PRISM screening. We made several improvements to the PRISM barcoding 
method described previously4. The assay employs a 24-nucleotide barcode stably 
introduced into cancer cell lines via lentiviral transduction. The barcode is located 
at the end of the blasticidin resistance gene and is expressed as an mRNA under 
the highly active PGK promoter. We adapted the mRNA capture and Luminex 
detection method developed for the L1000 gene expression assay41 to detect PRISM 
barcodes to improve throughput. In addition to using an mRNA-based readout, 
assay improvements included pooling cell lines according to doubling time 
similarity, collapsing lysate plates together before detection and adding a spike-in 
barcode control for amplification and detection.

The detailed PRISM assay protocol is available online at https://depmap.org/
repurposing. Briefly, barcoded cell lines were pooled (25 cell lines per pool) based 
on doubling time and frozen into assay-ready vials. Vials were thawed and 1 pool 
was immediately plated per 384-well assay plate at 1,250 cells per well in triplicate. 
Cells were either treated the following morning with compounds by pin transfer 
(repurposing primary and secondary high-throughput screens) or plated directly 
onto assay-ready plates containing compounds (used for follow-up in the lower-
scale MTS004 and MTS006 screens). After a 5-d incubation, cells were lysed. Lysate 
plates containing 1 pool of 25 cell lines each were then pooled together further to 
yield 1 (in the secondary screen) or 2 (in the primary screen) final detection pools 
for amplification and barcode measurement. For the secondary screen, a set of ten 
unique barcodes were spiked into each well before PCR to control for variation in 
PCR amplification and Luminex detection following lysate pooling.

Data processing. Luminex median fluorescence intensity (MFI) values were 
calculated as the median fluorescence values of all beads corresponding to a single 
PRISM barcode in a single technical replicate. MFI values were log2-transformed 
(logMFI) and subjected to two quality control steps. First, an ‘outlier pool filter’ 
was applied to remove probable screening artifacts (Extended Data Fig. 2). In 
each assay plate, logMFI values were median centered per cell line and each well 
was summarized by the median of these centered MFI values. Wells more than 
five median absolute deviations from the median across all wells from the same 
compound plate and plate location were removed. Second, a ‘control separation 
filter’ was applied. For each plate, cell lines with strictly standardized mean 
difference42 values <2 were excluded from the rest of the analysis (Extended  
Data Fig. 3). Strictly standardized mean difference values were calculated as:

μ� � μþ
� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2� þ σ2þ

p

where μ−/+ and σ−/+ stand for the medians and the median absolute deviations of 
the logMFI values computed over the negative/positive control wells for each cell 
line on each plate. The number of PRISM profile cell line replicates passing quality 
control is shown in Extended Data Fig. 4.

A total of 1,448 compounds were selected for secondary eight-point dose–
response testing based on reproducibility, predictability, selectivity and compound 
availability (Supplementary Table 2). For the secondary screen only, ten unique 
barcodes were spiked into each well of each plate after cell lysis. Normalized MFI 
values were computed by taking the ratio of each logMFI value to the median 
logMFI of the inert barcodes in each well. For data produced before the spike-in 
protocol was introduced, normalized MFI values were set equal to MFI values.

Fold change values were calculated as the ratio of normalized MFI to the 
median of the normalized MFI from dimethylsulfoxide (DMSO)-treated negative 
controls for each cell line on each plate. The batch effects produced from variable 
detection and assay conditions were then removed using ComBat (located in the 
sva package; we used version 3.30.1 of sva)43. ComBat was run over each treatment 
condition separately by considering the log2-transformed fold change values as 
the probes and the pool-replicate combinations as the batches. The corrected log 
fold change values were then median collapsed for each cell line, screen, source 
plate and well combination. We labeled cell lines as sensitive to a treatment if the 
median-collapsed fold change was <0.3.

Dose–response analysis. Dose–response relationships were obtained by fitting 
four-parameter logistic curves to viability values for each compound and cell line 
using the R package drc (version 3.0-1). Following the practice of Smirnov et al.44, 
the upper asymptote of the logistic curves was fixed at 1 and the viability values 
were fitted as a function of drug concentration according to:

V cð Þ ¼ E1 þ 1� E1
1þ eHS c�EC50ð Þ

where all concentrations are in the natural logarithm scale. IC50 values were defined 
as the concentration c at which V(c) = 0.5. Additionally, the dose–response area 
under the curve (AUC) was calculated using the normalized integral:

AUC ¼
R cmax
cmin

V cð Þdc
cmax � cmin

This formulation puts AUC values on a scale between 0 and 1 for curves  
with lower asymptotes <1, where lower AUC values indicate increased sensitivity 
to treatment.

Biomarker discovery. To generate predictive biomarkers, we adopted 
the ATLANTIS predictive models9 and trained multiple models for each 
PRISM profile. ATLANTIS is a tailored nonlinear regression model for gene 
dependency prediction based on the baseline characteristics of cancer cell lines. 
More specifically, ATLANTIS is an efficient implementation of a conditional 
inference forest45 with additional weighting and iterative feature selection steps. 
Implementation details have been published previously9 and the code is available 
on a public repository (https://github.com/cancerdatasci/atlantis).

For each dose-wise log fold change profile, 14 ATLANTIS models are 
trained (1 model per feature set). Feature sets include baseline cell line omics, 
genetic dependencies and experimental confounders. All feature sets are listed in 
Supplementary Table 10.

Next, the predictive performance of each model was assessed based on the 
Pearson correlation between out-of-bag model predictions and the response 
variable. Models with Pearson correlations greater than 0.2 were strong models. 
The relative importance of each feature (mean decrease in accuracy) was computed 
by ATLANTIS for each model. The most important feature of each strong 
predictive model is presented as a potential predictive biomarker or strongly 
associated phenotype. The comprehensive list of biomarkers is available at  
https://depmap.org/repurposing.

Compound killing selectivity. To assess for selective killing activity, the 
bimodality coefficient8 for each median-collapsed log fold change PRISM profile 
was computed for each compound as follows:

g2 þ 1

kþ 3 n� 1ð Þ2= n� 2ð Þ n� 3ð Þ

where n is the number of samples (cell lines), g is the sample skewness and k is the 
sample excess kurtosis. Note that a larger bimodality coefficient implies a highly 
skewed (large magnitude of g) but light-tailed (small kurtosis) distribution.

Computation of AUC values for cross-dataset comparison. Secondary PRISM 
Repurposing data were compared to CTD2 (v.2.0, accessed 15 December 2015) 
and GDSC available through the PharmacoGX package (version 1.12.0)17,44. 
For the PRISM Repurposing and GDSC datasets, dose–response curves were 
fitted as described earlier. CTD2 provides dose–response curve parameters and 
curves were not refitted. The scope of the comparison was limited to compounds 
screened in all three datasets with a minimum overlapping fourfold dose range 
across the datasets. Dose–response curves were computed for each compound-cell 
line dataset combination using all available doses. AUC values were calculated 
over the shared dose range (curves were not refitted). The complete table of the 
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published/recomputed dose–response parameters and AUC values are given in 
Supplementary Table 11.

Assessment of noise in the PRISM Repurposing dataset. The s.e.m. of the 
inferred log fold change viability values was calculated to estimate the amount of 
noise in the PRISM screen. We assumed that (spike-in) normalized logMFI values 
have a cell line-specific additive noise with a constant variance σ2 across treatments. 
An s.e.m. propagation analysis (see section 9.3 of Chatfield46), gives the following:

σlog fold change ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2treatment þ σ2control

nrep

s
 σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ncontrol

nrep

s

where nrep is the number of replicates (3 for PRISM Repurposing), ncontrol is the 
number of negative control wells in a given plate (32 in the standard PRISM assay 
format) and σlog fold change is the s.e.m. estimate; σ was estimated separately for each 
cell line and plate using normalized, negative-control log2 MFI values. σ estimates 
for the same cell line were median-collapsed and used to calculate the σlog fold change. 
This procedure was applied separately to each PRISM Repurposing screen. In 
MTS006, DMSO-only plates were used.

Projection of viability profiles to two dimensions. The log viability profiles 
from the primary screen were embedded into a two-dimensional manifold using 
the UMAP7 algorithm and are visualized in Fig. 2a. Cell lines that were missing 
more than 10% of their viability values (failed in the quality-control steps) were 
removed and the remaining missing values were imputed using the R package 
FastImputation (version 2.0)47. UMAP was applied to the resulting data, using 
the cosine distance metric and the following configuration parameters: 7 nearest 
neighbors; 0.5 minimum distance; 2 components; and 200 training epochs. The 
rest of the parameters were set to the defaults provided by the R package umap 
(version 0.2.3.1). For the visualization, we filtered out compounds with an average 
Pearson replicate correlation below 0.25. Mechanisms of action that include fewer 
than 20 compounds are shown in translucent gray.

Comparison to genetic loss-of-function screens. Linear models were fitted to 
test the association between the primary collapsed log fold change profiles of each 
drug and the DepMap Avana CRISPR knockout gene effect scores using the lmFit 
function from the limma R package (version 3.38.3) with default parameters48.  
P values were corrected within each dose profile for multiple hypotheses using the 
Benjamini–Hochberg method. For primary data, a single profile was selected to 
test for each drug. The procedure was repeated for secondary collapsed log fold 
change profiles. A single dose series was selected for each drug.

Compounds for confirmatory studies. Paclitaxel (catalog no. S1150), tyrphostin 
AG-1296 (catalog no. S8024), anagrelide HCl (catalog no. S3172), levonorgestrel 
(catalog no. S1727), deoxycorticosterone acetate (catalog no. S4243), drospirenone 
(catalog no. S1377) and norethindrone (catalog no. S4040) were purchased 
from Selleck Chemicals. Dofequidar fumarate (catalog no. SML0938), N,N′-
Bis(salicylidene)-o-phenylenediamine vanadium(IV) oxide complex (catalog 
no. 68541) and vanadium(IV) oxide sulfate hydrate (catalog no. 233706) were 
purchased from Sigma-Aldrich. Tepoxalin (catalog no. T103205) was purchased 
from Toronto Research Chemicals and WuXi AppTec (custom synthesis). DCEBIO 
(catalog no. 1422) and zardaverine (catalog no. 1046) were purchased from Tocris. 
Disulfiram (HY-B0240), bortezomib (HY-10227) and tanaproget (HY-15606) 
were purchased from MedChemExpress. BMOV (FB18735) was purchased from 
Carbosynth. Tetrathiomolybdate (catalog no. AC389530010) was purchased from 
Thermo Fisher Scientific. Danazol (catalog no. 1500220) was purchased from 
Microsource. Gestrinone (catalog no. Prestw-1267) was purchased from Prestwick.

Synthesis of RWJ20142. Reactions were monitored by thin-layer chromatography 
with 0.25 mm Merck precoated silica gel plates (60 F254) and Waters Alliance HT 
LC/MS system (Waters 2998 UV/Visible Detector, Waters ACQUITY SQD mass 
spectrometer and Waters e2795 Sample Manager) using a Waters CORTECS C18 
column (3 × 30 mm2, 2.7 μm particle size). Additional parameters were: solvent 
gradient, 97% A at 0 min, 5% A at 1.75 min, 97% A at 2.28 min, total 2.60 min; 
solvent A, water (MILLIQ) + 0.01% formic acid (Sigma-Aldrich); solvent B, 
acetonitrile (EMD Millipore) + 0.01% formic acid; flow rate, 1.75 ml min−1. 
Purification of reaction products was carried out by flash chromatography using 
CombiFlash Rf with Isco RediSep Rf High Performance Gold (Teledyne ISCO) 
or SiliaSep High Performance (SiliCycle) columns (4, 12, 24, 40, 80 or 120 g). 1H 
nuclear magnetic resonance and 13C nuclear magnetic resonance spectra were 
obtained using a 400 Ascend (Bruker). Chemical shifts are reported relative to 
chloroform (δ = 7.24) for 1H nuclear magnetic resonance.

In a 100 ml oven-dried flask, a solution of lithium hexamethyldisilazide (10 ml, 
10 mmol, 1.0 M in tetrahydrofuran (THF)) was added dropwise to a solution of 
1-(4-chlorophenyl)ethanone (1.10 g, 7.14 mmol) in dry THF (20 ml) at −78 °C 
under argon atmosphere. After 1 h, a solution of dihydrofuran-2,5-dione (0.86 g, 
8.52 mmol) in dry THF (10 ml) was added at −78 °C, stirred for 30 min and then 
warmed up to room temperature. After 2 h, the reacting mixture was quenched 
with water, acidified with 1 N HCl (pH 2), then extracted with dichloromethane 

(3 × 10 ml2). The combined organic layers were dried over Na2SO4, filtered and 
concentrated. The residue was purified by column chromatography on silica 
gel (10–50% ethanol ethylacetate in hexanes) to afford 6-(4-chlorophenyl)-4,6-
dioxohexanoic acid (550 mg, 31% yield). LC–MS: MS (ESINeg) m/z = 253 [M-H]−.

In a 50 ml flask, a solution of (4-methoxyphenyl)hydrazine hydrochloride 
(0.37 g, 2.12 mmol), 6-(4-chlorophenyl)-4,6-dioxohexanoic acid (0.49 g, 
1.93 mmol) and triethylamine (0.31 ml, 2.31 mmol) in methanol (30 ml) was 
stirred overnight at room temperature. The reaction was quenched with 5% HCl 
aqueous solution (pH 2), then extracted with dichloromethane (3 × 10 ml2). The 
combined organic layers were dried over Na2SO4, filtered and concentrated. The 
residue was purified by column chromatography on silica gel (20–60% ethanol 
ethylacetate in hexanes) to afford 3-[5-(4-chlorophenyl)-1-(4-methoxyphenyl)
pyrazol-3-yl]propanoic acid (285 mg, 42% yield). LC–MS: MS (ESINeg) m/z = 355 
[M-H]−. 1H nuclear magnetic resonance (400 MHz, chloroform-D) δ = 10.25  
(brs, 1 H), 7.27 (d, J = 8.5 Hz, 2 H), 7.20–7.12 (m, 4 H), 6.87 (d, J = 8.9 Hz, 
2 H), 6.35 (s, 1 H), 3.82 (s, 3H), 3.07 (t, J = 7.5 Hz, 2 H), 2.83 (t, J = 7.5 Hz, 2H). 
Compound purity >97% was quantified by LC–MS.

Synthesis of BEOV. Vanadyl sulfate trihydrate (25 g, 115 mmol) dissolved in 
25 ml of water was added to ethyl maltol (43.4 g, 310 mmol) dissolved in 125 ml 
of hot water under argon; the resulting solution was heated gently with stirring 
for 30 min. The pH was adjusted very slowly to 8.5 by adding NaOH (12.7 g, 
319 mmol) in 10 ml of water. The resulting mixture was refluxed for 2 h and then 
allowed to cool to room temperature. The dark blue–gray solid was collected by 
vacuum filtration, washed with cold water and dried in a vacuum to produce 
BEOV with a yield of 88%. The compound was 93% pure by LC–MS.

Cloning. The pXPR_003 and pXPR_023 vectors were acquired from the Genetic 
Perturbation Platform (GPP; Broad Institute). The oligonucleotides for sgRNA 
design were generated using Broad GPP sgRNA guide generator resource  
(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) and  
the respective oligonucleotides were synthesized by Integrated DNA Technologies. 
To clone the sgRNAs into either the pXPR_003 guide-only or pXPR_023 all-in-one 
CRISPR lentiviral expression systems, we followed the protocol available on the 
GPP website (https://portals.broadinstitute.org/gpp/public/resources/protocols). 
The CRISPR sgRNA sequences are shown in Supplementary Table 12.

Antibodies and western blot. The following antibodies were used: polyclonal 
rabbit anti-PDE3A (1:1,000; catalog no. A302-740A; Bethyl Laboratories); 
monoclonal mouse anti-V5 (1:5,000; catalog no. R960-25; Thermo Fisher 
Scientific); monoclonal rabbit anti-MDR1/ABCB1 (clone D3H1Q) (1:1,000; catalog 
no. 12683; Cell Signaling Technology); monoclonal mouse anti-β-actin (clone 
8H10D10) (1:1,000; catalog no. 3700; Cell Signaling Technology); and monoclonal 
mouse anti-SLC26A2 (clone 3F6) (1:1,000 dilution; catalog no. H00001836-M04; 
Novus Biologicals). Cells were lysed with radioimmunoprecipitation assay 
buffer (CHAPS buffer substituted for Extended Data Fig. 8a) supplemented by 
protease and phosphatase inhibitors (Sigma-Aldrich). For the ABCB1 blots, 
proteins were transferred onto a nitrocellulose membrane using a Mini Trans-
Blot Electrophoretic Transfer Cell (Bio-Rad Laboratories) in Tris-glycine buffer 
(Bio-Rad Laboratories) with 10% methanol for 4 h at 60 V and 4 °C. Membranes 
were blocked in Odyssey Blocking Buffer (LI-COR) for 1 h and probed overnight 
with primary antibodies. The following day, membranes were washed and probed 
with IRDye secondary antibodies (catalog nos. 926-68020 and 926-32211, each 
at a 1:5,000 dilution; LI-COR). For the PDE3A and V5 blots, different secondary 
antibodies were used (926-32210 and 926-68020, each at a 1:10,000 dilution;  
LI-COR). Blot images were collected with the Odyssey CLx imager (LI-COR).

Genomic DNA (gDNA) PCR and next-generation sequencing to quantify 
CRISPR editing frequency. To confirm efficient CRISPR cutting at the target 
loci, PCR primers were designed flanking the sgRNA cut site by 75–100 base pairs 
(bp) on either side. The human gDNA PCR primer sequences corresponding 
to the regions targeted by MDR1, SLC26A2 and MTF1 sgRNAs are shown in 
Supplementary Table 13. gDNA was isolated from knockout cell lines using 
the Gentra Puregene Kit (QIAGEN) and amplified with the primers to yield an 
amplicon roughly 150–250 bp in length using Herculase II Fusion Polymerase 
(Agilent Technologies). The PCR protocol involved a 2-min denaturation at 95 °C, 
followed by 24 cycles of 95 °C for 2 min, 55 °C for 2 min and 72 °C for 1 min. PCR 
samples were purified and submitted for the next-generation CRISPR sequencing 
assay at the Massachusetts General Hospital DNA Core. Knockout efficiency was 
assessed by the percentage of reads containing a frameshift caused by an indel 
compared to the total read count. Results for each guide were averaged across 
primer sets with successful amplification.

Cellular viability assays. Cells were seeded at a density of 2,000 cells per well 
(1,000 cells per well for the HeLa cell line) in a 96-well clear bottom black 
microplate (Corning). The following day, compounds were dispensed using the 
D300e Digital Dispenser (Tecan). Following incubation, viability was assessed 
by CellTiter-Glo (Promega Corporation). Luminescence was measured using 
an EnVision plate reader (PerkinElmer; EnVision Manager 1.13.3009.1401). 
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Independent replicate wells were averaged and normalized to vehicle control.  
Dose curves were generated using Prism 8 (GraphPad Software).

PDE3A coimmunoprecipitation assay. The PDE3A immunoprecipitation and 
western blotting of coprecipitated SLFN12-V5 protein experiments were performed 
as described previously18. Briefly, HeLa cells were plated onto 15 cm plates at 3 × 106 
cells per plate and transfected the next day with 15 µg of pLX307-SLFN12 plasmid 
(clone TRCN0000476272) using FuGENE 6 (Promega Corporation) at a 4:1 ratio. 
Roughly 72 h posttransfection, cells were treated with 10 µM of the repurposing hit 
compounds or 1 µM of DNMDP or 1 µM anagrelide for 6 h. Cells were collected 
and lysed with a modified radioimmunoprecipitation assay buffer (150 mM 
NaCl, 10% glycerol, 50 mM Tris-Cl pH 8.0, 50 mM MgCl2, 1% NP-40 detergent), 
supplemented protease and phosphatase inhibitors. Immunoprecipitation was 
performed using 2 mg of total protein lysates and 1 µg of anti-PDE3A antibody at 
4 °C overnight, followed by incubation with 7.5 µl each of Protein A and Protein 
G Dynabeads (10001D and 10003D; Thermo Fisher Scientific) at 4 °C for 1 h. 
Beads were washed with lysis buffer and proteins were eluted with 30 μl of lithium 
dodecyl sulfate–polyacrylamide gel electrophoresis loading buffer.

PDE3A and PDE3B enzyme activity assays. A commercial fluorescence 
polarization assay was performed using recombinant PDE3A and PDE3B by 
BPS Bioscience. Compounds were tested in duplicate at 9 concentrations in 
a half-logarithmic dilution series (top concentration of 10 µM) with a final 
DMSO concentration of 1%. The enzymatic reactions were conducted at room 
temperature for 60 min in a 50 µl mixture containing phosphodiesterase assay 
buffer, 100 nM FAM-cAMP, a PDE enzyme and the test compound. After the 
enzymatic reaction, 100 µl of a binding solution (1:100 dilution of the binding 
agent with the binding agent diluent) was added to each mix and the reaction was 
performed at room temperature for 15 min. Fluorescence intensity was measured 
at an excitation of 485 nm and an emission of 528 nm using an Infinite M1000 
microplate reader (Tecan). Fluorescence intensity was converted to fluorescence 
polarization using the Magellan v.6 software (Tecan).

Differential scanning fluorimetry (thermal shift) analysis of compounds 
binding to PDE3A. The gene for PDE3A (residues 677–1,141) was codon-
optimized for Escherichia coli expression (GeneArt; Thermo Fisher Scientific) 
and cloned into an expression vector that attached an N-terminal polyhistidine 
sequence followed by a Tobacco Etch Virus protease cleavage site. The protein was 
expressed in E. coli and purified by affinity and size-exclusion chromatography. 
The polyhistidine sequence was removed by the Tobacco Etch Virus protease. 
PDE3A (5 µM) was incubated for 20 min at room temperature with 100 µM of each 
compound. The reaction buffer was 20 mM HEPES, pH 7.4, 150 mM NaCl, 500 µM 
TCEP, 5 mM MgCl2 and 1% DMSO. After incubation, SYPRO orange (Thermo 
Fisher Scientific) was added to give a final concentration of 10× relative to stock 
concentrate. Protein was tested using the LightCycler 480 (Roche Life Science). 
The temperature was increased from 25 to 95 °C using a gradient of 0.06 °C s−1.

LS1034 CRISPR–Cas9 genome-wide knockout screen. The Brunello genome-
scale sgRNA library was obtained from the Broad Institute GPP49. Virus was 
titrated to a goal infection efficiency of 0.3–0.6. LS1034-Cas9 cells were infected 
with Brunello virus in 12-well plates via centrifugation at 2,000 r.p.m. and 30 °C. 
The following day, cells were split into two replicate flasks and selected with 
6 µg ml−1 puromycin for 7 d. After selection, replicates were seeded into 16 µM 
tepoxalin (Wuxi) or DMSO control. Cells were maintained at 37 °C and 5% CO2  
in CellSTACK 1,272 cm2 2-STACK flasks (Corning) in RPMI with 10% FCS.  
Cells were reseeded every 7 d at a minimum of 40 million cells per passage  
(to maintain approximately 500× library representation). Media and drugs were 
refreshed every 3–4 d for a total of 3 weeks. gDNA was isolated from cell pellets 
using the NucleoSpin Blood XL columns (MACHEREY-NAGEL). gDNA PCR  
and sequencing were performed by the Broad Institute GPP.

LS1034 CRISPR–dCas9 genome-wide activation screen. LS1034 cells were stably 
transduced with pXPR_109 to express dCas9-VP64 (ref. 50). Selective induction of 
CD45 and CD4 expression using control guides was confirmed by flow cytometry. 
The Calabrese B genome-scale virus library was obtained from the Broad Institute 
GPP. LS1034-dCas9-VP64 cells were infected via centrifugation as described earlier. 
The following day, cells were split into two replicates and reseeded. The next day, 
6 µg ml−1 of puromycin was added. After selection for 6 d, replicates were split into 
DMSO or 16 µM tepoxalin (Wuxi) drug arms in duplicate and cultured for 2 weeks 
as described earlier. gDNA was isolated and sequenced as described earlier.

CRISPR screen analysis. Guides targeting multiple genes or with <50 reads in the 
plasmid DNA pool were filtered. Counts were normalized against total library size. 
The guide-level log2 fold change was computed using the ratio between treatment 
versus vehicle control counts. The results from all guides targeting each gene were 
averaged. Statistical significance for each gene-level result was calculated using the 
MAGeCK-MLE method, using the suggested number of permutation rounds  
(10; ref. 51). Two-sided P values were corrected for multiple hypothesis testing using 
the Benjamini–Hochberg method.

Tepoxalin competition assay. LS1034-Cas9-firefly luciferase cells were cocultured 
in a 1:1 ratio with LS1034-Renilla luciferase cells, both infected with ABCB1 
sgRNA or a cutting control sgRNA. Cells were treated with 16 µM tepoxalin 
(Wuxi) or vehicle. The coculture was passaged every 4 d and reseeded with drug. 
Luciferase activity was quantified using the Dual-Glo Luciferase Assay System 
(Promega Corporation) and measured using an EnVision plate reader. Data points 
were collected at day 0 and every 4 d until 12 d of treatment. The firefly to Renilla 
luminescence ratio was normalized to the initial day 0 measurement.

Tepoxalin cell permeability and stability assays. Compounds were incubated  
in medium alone or with 1 million cells ml−1 at 37 °C with gentle shaking for  
3 h. Following incubation, cell samples were centrifuged at 500g for 5 min  
and washed twice with cold PBS. Cells were resuspended in 130 µl of water. 
Samples were sonicated and centrifuged at 3,000g for 15 min at 20 °C; 5 µl of 
supernatant was combined with 45 µl of cell media, 50 µl of water and 50 µl of 
acetonitrile containing internal standard. Samples were centrifuged again and 
a final 100 µl aliquot was transferred to a 96-well plate for analysis. Samples 
were analyzed on an ultra-performance liquid chromatography–tandem mass 
spectrometry system consisting of an ACQUITY UPLC I-Class FTN (Waters) 
and Triple Quad 4500 System (SCIEX) with compounds detected by positive 
mode multiple reaction monitoring detection. Mobile phase A consisted of water 
with 0.1% formic acid (catalog no. 33015-1L; Honeywell), while mobile phase B  
consisted of acetonitrile with 0.1% formic acid. The gradient ran from 10 to 
95% B over 0.8 min at a flow rate of 0.9 ml min−1. An ACQUITY BEH C18 1.7 m, 
2.1 × 50 mm2 column (Waters) was used with column temperature maintained 
at 65 °C. Sample concentrations were determined using a standard curve and 
dilution quality-control samples prepared in a surrogate matrix. The Analyst 
v.1.6.2 software was used for integration and calculation determination. For 
the stability study, 1 µM of tepoxalin was added to PBS, RPMI with 10% FCS or 
acetonitrile in duplicate and measured by mass spectrometry with time points 
prepared at 0, 24, 48 and 72 h. The mass spectrometer was run in positive mode 
using multiple reaction monitoring detection for tepoxalin and the internal 
standard (75 nM midazolam).

Tepoxalin drug synergy/antagonism assays. Tepoxalin or paclitaxel were added 
in a dose–response matrix to LS1034 or REC1 cells, and viability was assessed 
by CellTiter-Glo. For the drug combination viability data, we first normalized 
CellTiter-Glo measurements by the median over DMSO wells on each plate. We 
then used the R package synergyfinder (version 1.8.0)52 to estimate Bliss synergy 
scores across all dose combinations, applying synergyfinder’s default baseline 
correction method. Synergy values for each drug combination and cell line 
were summarized by the synergy score with the highest magnitude across dose 
combinations (maximum synergy). We verified that similar results were obtained 
qualitatively using other synergy models (for example, Loewe, highest single agent 
and zero interaction potency) and methods for aggregating synergy scores across 
dose combinations (for example, averaging).

ABCB1 activity assays. The ABCB1 antagonism assay was performed by Eurofins 
using published methods53. Briefly, MDR1-MDCK cells were incubated with 
test compounds and calcein acetoxymethyl. Change in calcein acetoxymethyl 
concentration was assessed by fluorescence measurement. A second assay, MDR1-
MDCK cell permeability, was performed by Cyprotex. Briefly, loperamide, a known 
MDR1 substrate, was added to the apical side of a cell monolayer and transport to 
the basal side was quantified over 60 min. Inhibition of MDR1-mediated transport 
of loperamide was assessed by adding tepoxalin or positive control (verapamil).

Transcriptional profiling by RNA-seq. LS1034 cells were seeded in 12-well plates. 
The following day, cells were treated in triplicate with 12 µM tepoxalin or DMSO 
vehicle control for 6 h. Wild-type SF295 cells and SF295 cells containing Cas9 and 
sgRNAs targeting GFP or MTF1 were plated in triplicate on a 6-well plate and 
incubated overnight. RNA was isolated using the RNeasy Mini Kit (QIAGEN) 
with DNase treatment. RNA quality was confirmed by Bioanalyzer (Agilent 
Technologies). Library preparation was performed by the Molecular Biology Core 
Facility at the Dana-Farber Cancer Institute using the KAPA mRNA HyperPrep 
Kit (Roche). Nucleic acid was sequenced using an Illumina NextSeq 500 PE75 
instrument. Gene-level expression values were obtained from RNA-seq using 
the TOPMed RNA-seq pipeline (version 1)54. RSEM (version 1.3.0) was used to 
generate transcripts per million gene-level expression quantifications. These tools 
were run using the FireCloud and Terra platforms55. Differential gene expression 
was calculated using the DESeq2 package (version 1.22.2)56.

Statistics and reproducibility. No statistical method was used to determine 
sample sizes. Compounds were plated for screening without regard to compound 
identity, but experiments were not randomized. No data were excluded from the 
analysis, except individual data points flagged as assay failures by the process 
described earlier. Statistical tests are described in the text and figure legends with 
their associated sample sizes. PRISM data were generated without the investigators’ 
knowledge of compound and cell line identities during screening. Investigators 
were not blind to compound and cell line identities during the analysis. Further 
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information on research design is available in the Nature Research Reporting 
Summary linked to this article.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The PRISM Repurposing dataset, including screening data and all metadata, is 
available at the Cancer Dependency Map portal (https://depmap.org/repurposing). 
Raw and processed PRISM viability data are available from the Cancer Dependency 
Map portal (https://depmap.org/repurposing) and have been archived via figshare 
(https://doi.org/10.6084/m9.figshare.9393293). Interactive versions of Figs. 2a 
and 4 (with accompanying raw data) are also available on the Cancer Dependency 
Map portal; scatter plot source data are also deposited in figshare. The cell line 
features used for biomarker analysis are listed in Supplementary Table 10 and 
archived via figshare (https://doi.org/10.6084/m9.figshare.10277810). RNA-seq 
data have been deposited with the Gene Expression Omnibus (accession number 
GSE133299). All other data supporting the findings of this study are available from 
the corresponding author upon reasonable request.

Code availability
Data analysis was performed in R v.3.5.1 using custom-made or publicly available 
R packages. Individual packages are explicitly cited in the manuscript. The 
custom code is available upon request and from GitHub (https://github.com/
broadinstitute/repurposing).
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Extended Data Fig. 1 | PRISM Repurposing assay and data processing overview. a, Lineage diversity of PRISM cell lines. The 489+ cancer cell lines 
tested span more than 23 tumor types. Lineages with fewer than 10 cell lines are listed on the right. b, Experimental protocol. Cell lines are grouped 
by doubling time into pools of approximately 25 cell lines. One pool is plated onto each assay plate. Compounds are transferred by pin transfer from a 
source compound plate (HTS and HTS002 screens), or cells are plated directly onto assay-ready plates generated by acoustic dispensing of compounds 
(MTS004, MTS005, and MTS006 screens). In either case, compound plates are shared by all replicates of each treatment condition. After incubation 
and lysis, all assay plates generated by a given compound plate are grouped and collapsed into 3 (HTS002, MTS005, and MTS006 screens) or 6 
(HTS, MTS004 screens) detection plates so that each detection plate receives 1 or zero copies of each pool. Ten control barcodes are then spiked into 
each detection plate well (HTS002, MTS005, and MTS006 screens). Detection plates are amplified by PCR and detected using Luminex FLEXMAP 
3D instruments. c, Data processing workflow. Median Fluorescence Intensity (MFI) values are calculated from fluorescence values for each replicate-
condition-cell line combination and are log2-transformed. Assay plates wells are normalized, median-collapsed, and compared to the normalized medians 
of other assay plate wells in the same well position that have been dosed by the same compound plate. A robust z-score is calculated, and assay plate 
wells with a |z-score| > 5 are filtered. Strictly standardized mean differences (SSMD) are calculated between positive and negative control conditions for 
each cell line on each assay plate. Cell line-assay plate combinations with SSMD < 2 are filtered by a control-separation filter to generate the log MFI data 
matrix. In datasets with control barcodes added, data are normalized with respect to the median of control barcodes to generate the MFI normalized data 
matrix. Data are DMSO-normalized and pooling artifacts are corrected using ComBat to generate the log fold change data matrix. Up to 3 independently 
treated plates (range 1-3 based QC filtering) in one screen are median-collapsed to generate the collapsed log fold change data matrix.
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Extended Data Fig. 2 | Outlier pool QC filter to detect pool-level failures. a, Primary screen QC pass rate by pool. The fraction of treated assay plate-wells 
that pass the outlier filter is indicated. Cell line log MFI data are median-centered, and the medians of assay plate-wells are compared within each well-
detection plate combination. Extreme outliers with |robust z-score| >5 are filtered. b, Primary screen QC pass rate by detection plate. c, Primary screen  
QC pass rate of assay plates. Overall pass rate was high (median 98.6%, minimum 83.8%). d, Secondary screen QC pass rate by pool. e, Secondary screen 
QC pass rate by detection plate. The pass rate is above 95% for 81% of detection plates. f, Secondary screen QC pass rate by plate-pool combinations. 
3 replicate plates are combined for visualization. Overall pass rate was high (median 99.1%, mean 94.3%), where failures are almost exclusively coming 
from 7 detection plates, implying failure at final detection step. Across the screen, 5.7% of the pools are filtered out as outliers.
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Extended Data Fig. 3 | Control-separation QC filter to detect cell line failures. aa, Primary screen QC pass rate by cell line. SSMD of log MFI values is 
calculated between positive control and negative control treatments for each cell line on each plate. Data from cell line-plates with SSMD < 2 are filtered. 
b, Primary screen QC pass rate by detection plate. c, Primary screen QC pass rate of assay plates. Overall pass rate was high (median 99.2%, mean 
94.3%). Some detection plates show higher failure rates for specific detection pools, implying failure at final detection step. The bulk of the filtered data 
was from two detection plate-detection pools (PREP013_X2 and PREP003_X1 in detection pool 8). d, Secondary screen QC pass rate by cell line. SSMD  
of log MFI values is calculated between positive control and negative control treatments for each cell line on each assay plate. Data from cell line-plates 
with SSMD < 2 are filtered. e, Secondary screen QC pass rate by detection plate. f, Secondary screen QC pass rate of assay plates. Overall pass rate was 
lower than primary (median 99.88%, mean 79.1%). Similar to the primary screen, the main mode of failure is platewise failures.
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Extended Data Fig. 4 | Number of well replicates passing QC in the PRISM screens. a, Number of individual cell assay well replicates (max n = 3) that pass QC 
filters in the primary screen, grouped by compound plate and cell line quality. 86% (497 out of 578) of the cell lines have at least one passing replicate for all 
compound plates. Identity of cell lines with lower quality data are listed at the bottom. b, Number of individual cell assay well replicates (max n = 3) that pass 
QC filters in the secondary screen. 95% (463 out of 489) of cell lines have at least 1 passing replicate on at least 85% (30 out of 35) of the compound plates.
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Extended Data Fig. 5 | Comparison of PRISM viability data to reference datasets. a, Pairwise Pearson correlations between drug response AUCs of 
publicly available datasets. AUC values were recomputed for 84 compounds and 318 cell lines (median 236 cell lines per compound) over the same 
dose-range for each compound-cell line pair in all 3 datasets (GDSC, CTD2, REP), and capped at 1. The Pearson correlation across shared compound-cell 
line pairs of the datasets is above 0.6. 44.8% of cell line-compound pairs show inactivity (AUC > 0.8) in all three datasets (n = 16650 compound-cell 
line pairs). b, Pairwise Pearson correlations between drug response AUCs after removing inactive cell line-compound pairs. Pearson correlations were 
re-calculated after filtering out the inactive data points (AUC > 0.8 in at all three datasets) (n = 9188 compound-cell line pairs). c, Compound-wise 
correlation between publicly available datasets. Correlation between PRISM data and other datasets is similar to correlation between other datasets. 
Points represent Pearson correlations and error bars represent 95% confidence intervals computed using Fisher’s z-transform. GDSC vs. CTD2 is in blue 
and REP vs. GDSC/CTD2 is in red. The number of cell lines shared by all three datasets is shown after each drug name. Paired t-tests on compound-wise 
correlations show statistically significant (two-sided p-value: 0.012 and 0.014 for top and bottom, respectively) but small mean of differences (0.049 and 
0.039 for top and bottom, respectively). The number of data points used to compute each correlation is given in the figure for each compound.
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Extended Data Fig. 6 | PRISM Repurposing noise quantification. a, Cell line standard error estimates across vehicle-treated wells on PRISM plates 
treated with DMSO (n = 489 cell lines). Log fold change standard errors are estimated for each cell line using DMSO-only plates included in the MTS006 
screen (n = 384 × 3 replicate wells for each cell line). b, Comparison of standard error estimates across screens. The error estimate calculation is repeated 
for each screen using DMSO wells on standard compound plates (n = 32 replicate wells per plate), except for MTS006, which uses DMSO-only plates 
(n = 384 replicate wells per plate). Higher noise levels are observed in the initial high-throughput screens HTS001 (n = 578 cell lines) and HTS002 
(n = 489 cell lines) compared with the medium-throughput screens MTS004 (n = 578 cell lines), MTS005 (n = 489 cell lines), and MTS006 (n = 489 cell 
lines). Upper box limits, center lines, and lower box limits correspond to 75th, 50th, and 25th percentiles, respectively. Whiskers extend from the box limits 
to the most extreme value up to 1.5 IQR from the median. All cell lines are depicted as points, regardless of outlier status. c, Comparison of estimated 
standard error of vehicle control wells between high-throughput pharmacogenomic datasets. The average standard error across cell lines (n = 301 cell lines 
for PRISM versus CTD2 and n = 197 for PRISM versus GDSC) is indicated by dashed lines with standard deviation in parentheses. d, Relationship between 
drug selectivity and replicate reproducibility in PRISM. Average Pearson correlation between replicates for each compound, dose, and screen combination 
is stratified by mean bimodality coefficient. For comparison, the null distribution for randomly paired compounds is shown in blue.
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Extended Data Fig. 7 | Generation of knockout cell lines by CRISPR/Cas9 editing. a, SF295 cells were transduced with multiple guides targeting the 
MTF-1 gene. Following selection, genomic DNA was isolated, and the targeted region was amplified by PCR. Results from the NGS CRISPR assay are 
shown as percent indel formation. b, Differentially expressed genes in SF295 glioma cells following MTF-1 knockout by CRISPR/Cas9. Loss of MT1E, MT1X, 
and MT2A expression was observed upon MTF-1 knockout. Gene expression across three independent cell wells per cell line were measured by mRNA 
sequencing. Two-sided p-values for differential gene expression following MTF-1 knockout vs. parental cell line were calculated with DESeq2 and corrected 
for multiple hypothesis testing using the Benjamini-Hochberg method. c, Drug sensitivity of SF295 cells with and without MTF-1 knockout. MTF-1 does not 
alter sensitivity to control chemotherapeutic bortezomib. Mean viability across 3 independently treated wells is shown, with standard deviation indicated 
by error bars. d, Western immunoblot validation of SLC26A2 knockout in OVISE ovarian and A2058 melanoma cancer cell lines. The SLC26A2 protein is 
known to migrate across a range of molecular weights due to glycosylation. Results are representative of two independent experiments. e, OVISE cells were 
transduced with multiple guides targeting the SLC26A2 gene. Indel frequency at the SLC26A2 CRISPR Cas9 cut sites was assessed by NGS CRISPR assay. 
f, ABCB1 western blot with and without CRISPR knockout of ABCB1 in the LS1034 colon cancer cell line. Western blot was performed once. g, Percent indel 
formation at genomic cut site in LS1034 ABCB1 CRISPR knockout lines assessed by NGS CRISPR assay. h, Cellular viability of LS1034 CRISPR knockout lines 
after treatment with tepoxalin for 5 days. Mean viability across 3 independently treated wells is shown, with standard deviation indicated by error bars.
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Extended Data Fig. 8 | Tepoxalin mechanistic studies. a, ABCB1 western blot with and without overexpression of ABCB1 in the Kuramochi ovarian cancer 
cell line. Western blot was performed once with three independent samples. b, Cellular viability of Kuramochi wild type and ABCB1-overexpressing cells 
after treatment with tepoxalin for 8 days. Mean viability across 3 independently treated wells is shown, with standard deviation indicated by error bars.  
c, (Left) Single-agent dose-response curves for LS1034 cells treated with tepoxalin and zosuquidar for 5 days. Two replicates were averaged. (Middle) 
Dose response curves for tepoxalin in combination with varying doses of zosuquidar (indicated by different colors) for 5 days. Data are shown for tepoxalin 
doses above 470 nM (the range indicated by the vertical dashed lines above). (Right) Bliss synergy scores estimated for each dose combination, showing 
strong antagonism by zosuquidar at tepoxalin doses above ~5 μM. Two combinations were not tested (NT). d, Maximum synergy score is shown across 
several drug combinations measured in both LS1034 and REC1 cell lines. Both tariquidar and elacridar were strongly synergistic in combination with 
paclitaxel, while all MDR1 inhibitors tested were antagonistic in combination with tepoxalin. e, Cellular permeability study of tepoxalin and RWJ20142 
in LS1034 colon cancer cell lines with and without ABCB1 knockout. Each indicated cell line or media-only control was treated with 20 μM tepoxalin or 
RWJ20142 for 3 hours. Tepoxalin and RWJ20142 concentrations in cell lysate or medium were determined by liquid chromatography-mass spectrometry. 
Mean viability across 3 independently treated wells is shown, with standard deviation indicated by error bars. Shaded dots indicate underlying data.  
f, Stability study of tepoxalin in three different vehicles over 72 hours. Percent of tepoxalin remaining is indicated at each timepoint. g, ABCB1 antagonism 
assay using calcein AM fluorescence. MDCKII cells were treated with indicated concentration of tepoxalin or RWJ20142. Mean percent ABCB1 inhibition 
across 3 replicates is shown. h, ABCB1 transport-based activity assay. Basolateral transport of the ABCB1 substrate loperamide was assessed using a 
monolayer of MDCK-ABCB1 cells in the presence of tepoxalin or RWJ20142. Mean percent ABCB1 inhibition across 2 replicates is shown.
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