Phosphoprotein-based biomarkers as predictors for cancer therapy

*Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233; †Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; ‡Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390; §Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX 77030; ¶Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy; ‡Bluefin Biomedicine, Beverly, MA 01915; †Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; ‡Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233; †Cell Signaling Technology, Danvers, MA 01923; ‡Department of Internal Medicine, Division of Endocrinology, University of Florida College of Medicine and Malcom Randall VA Medical Center, Gainesville, FL 32608; ¶Harrold B. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; §Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; ‡Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112; ¶Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390; ¶Department of Surgical Oncology, University of Texas MD Anderson Medical Center, Houston, TX 77030; †Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, University of Sydney, 2065 St Leonards, Australia; ‡Kolling Institute and Department of Endocrinology, Royal North Shore Hospital, University of Sydney, 2065 St Leonards, Australia; ‡Central Neurological System (CNS) Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany; †O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233; ¶Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35233; and †Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030

Edited by Tony Hunter, Salk Institute for Biological Studies, La Jolla, CA, and approved June 16, 2020 (received for review June 2, 2020)

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.

Significance

This study validates a path toward personalized medicine that utilizes a survey of the effective signaling state of tumors via posttranslational modification analysis as a diagnostic alternative to direct examination of genetic mutations. Here, this approach is utilized to identify biomarkers for Cdk5-driven tumors. The same approach could be adapted to identify markers of other tumor drivers. As the number of cancer types in which Cdk5 is implicated is rising and as drugs with the potential to selectively target Cdk5 are moved toward the clinic, the translational potential of this diagnostic-therapeutic coupled system will be broad.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

Data deposition: Phosphoproteomic data can be accessed on PhosphositePlus using the following link: https://www.phosphosite.org/Supplemental_Files.action.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010103117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2010103117

PNAS Latest Articles
medullary thyroid carcinoma (MTC) (12), small cell lung cancer (SCLC) (13), and pituitary adenomas (PAs) (14). In MTC, inhibition of Cdk5 activity decreases rates of cell growth (12, 15); in SCLC and PA, it decreases migration and invasion (16, 17). Expression of p25 in thyroid C cells produces MTC in mice (12), in part through alteration of traditional cell cycle regulatory components (18). Here we show that Cdk5 and p35/p25 expression may be an important driver of many types of NE cancer and that aberrant Cdk5 activity allows for a diagnostic-coupled treatment strategy that targets this protein kinase.

Results

Cdk5 in NE Neoplasms. To better understand the potential role of Cdk5 across multiple forms of NE malignancies, we assessed expression of the kinase and its activating cofactors in many different NE tumor and cancer types as we could obtain samples. Histological analysis demonstrated that Cdk5 and p35/p25 are present throughout various human NE neoplasms including MTC, pheochromocytoma (Pheo), PA, SCLC, Merkel cell carcinoma (MCC), pancreatic NE tumors (PNETs), and gastrointestinal NE tumors (GINETs) (Fig. 1). Furthermore, these proteins are present in cell lines derived from multiple types of NE neoplasms, including three human MTCs (TT, MTC-SK, and SIN-J), a human progenitor PHEO (hPheo1) (19), a human pancreatic carcinoid (BON), a rat insulinoma (INS), and two human SCLCs (H146 and H1184) (Fig. 2A and SI Appendix, Fig. S1A). Selective Cdk5 inhibition by Indolinone A (IndoA) blocked all human NE cancer cell growth more potently than it affected normal human fibroblasts or rat INS cells (Fig. 2B and SI Appendix, Fig. S2A–H). NE cell lines treated with Cdk5 inhibitors typically showed flattening and smoothing of cell body consistent with a less malignant phenotype, except the rat INS line (Fig. 2C and SI Appendix, Fig. S1B). Interestingly, the aberrant Cdk5 activator, p25, was present in all human cell lines derived from naturally occurring tumors but not the rat INS line generated using irradiation (20) (Fig. 2A), indicating that the presence of p25 was responsible for driving aberrant proliferation downstream of Cdk5.

IndoA inhibits Cdk5 activity with high affinity, but also targets Cdk4. Therefore, this compound potentially acts in cells as a Cdk4/5 inhibitor (4/5i) (21). Importantly, the structurally related Cdk4-specific inhibitor (4i), IndoB, was 6.4- to 15.4-fold less potent at preventing human NE cell proliferation (Fig. 2B and SI Appendix, Fig. S2A–H). Growth of multiple NE cancer cell lines...
was likewise blocked by the broad spectrum Cdk inhibitors roscovitine and dinaciclib. CP681301, a selective inhibitor of both Cdk2 and Cdk5, also blocked growth of NE cancer cells, whereas the Cdk2-specific inhibitor CVT313 had a greatly reduced effect (SI Appendix, Fig. S2 I–L). Thus, Cdk5 inhibition was necessary to robustly inhibit proliferation of cells derived from multiple forms of NE neoplasms. Previous work demonstrated cell growth inhibition of MTC cells using kinase dead mutants of Cdk5 as well as siRNA targeting the Cdk5 activator p35 (12). Together, these data indicate that Cdk5 and p35/25 expression characterize at least a portion of all NE neoplasms and aberrant Cdk5 activity is a major contributor to the growth of NE cancer cells.

Downstream Targets of Cdk5. To determine which pathways Cdk5 may target to drive NE cell proliferation, we used a unique bitransgenic mouse model of MTC (NSE-p25OE mice), developed in our laboratory, in which tumors arise at the natural organ site in the presence of an intact immune system. These mice express an activator of Cdk5, p25-GFP, in C cells of the thyroid under the control of a doxycycline (dox) regulatable promoter (Fig. 3A) (12). This system can be used to generate actively growing MTC tumors through expression of p25-GFP as well as growth-arrested MTC tumors through initial expression and subsequent suppression of p25-GFP via readministration of dox (Fig. 3A–C). As C cells only comprise 3% of a normal thyroid, this system allows generation of sufficient quantities of C cells for direct comparison of the signaling states between dividing and nondividing populations.

Phosphoproteomic analysis of growing vs. arrested MTC tumors was performed using PhosphoScan technology that included trypsin digest and peptide immunoprecipitation utilizing antibodies that recognize proline-directed phosphorylation of serine or threonine in the context of a MAPK or Cdk consensus sequence (22). This analysis revealed global differences in the proline-directed S/T phosphorylating network including over 250 peptides with elevated phosphorylation levels in growing tumors (Fig. 3D and SI Appendix, Table S1). From this set of phosphorylation sites, those not conserved in humans or conforming to a stringent Cdk5 phosphorylation sequence (S/T-P-x-K/H/R) were eliminated. From the remaining proteins, Ser807 and Ser811 on Rb family members, Ser391 on SUV39H1, Thr709 on FAM53C, Thr143 on ASXL2, Thr202 on LARP6, and Ser17 on H1.5 were identified as potential targets (SI Appendix, Table S2). Short interfering peptides (SIPs) containing the phosphorylation site flanked by eight amino acids on both the N- and C-terminal sides were designed to selectively interfere with phosphorylation or function of the 50 targets. A cell-penetrating sequence (ROQKFQWNRMKWKK) from penetratin (PEN) was added to the N terminus of peptides to facilitate entry into cells. A high-throughput proliferation-based assay identified 15 SIPs that inhibited growth of NE cancer cells but not normal primary fibroblasts (Fig. 3E and F and SI Appendix, Table S2), suggesting that these sites may be important for NE cancer cell growth.

We performed ingenuity pathway analysis (IPA) to ascertain major signaling cascades and pathways that are associated with these 15 proteins. Among the predicted 25 statistically enriched canonical pathways, cell cycle regulation, DNA repair, and diverse cancer signaling pathways are a predominant feature (Fig. 3F and SI Appendix, Table S3). Thus, the downstream targets identified here are associated with common cancer mechanisms.

Biomarkers of Cdk5 Activity. Phosphorylation state-specific antibodies were successfully generated for detection of six sites: Ser608 Additional Sex Combs Like 2 (ASXL2), Thr143 Family with Sequence Similarity 53 Member C (FAM53C), Thr709 Filamin B (FLNB), Thr202 La Ribonucleoprotein Domain Family Member 6 (LARP6), Ser110 Kinetochore-Associated Protein Homolog (KNL-2), and Ser988 Retinoblastoma-Like Protein 1 (RBL1). Phosphorylation state-specific antibodies were also generated to two sites previously identified as targets of Cdk2: Ser17 Histone 1.5 (H1.5) (23, 24) and Ser391 Suppressor of Variegation 3-9 Homolog 1 (SUV39H1) (25) (SI Appendix, Fig. S3). Phosphorylation of these eight sites, as well as the thoroughly established Ser507/Ser811 sites on retinoblastoma-associated protein (RB) (26, 27), was confirmed in mouse MTC tumors, in which growth was driven by expression of p25-GFP, and reduced in arrested tumors (Fig. 4A). In agreement, phosphorylation levels of six of these sites were dose-dependently decreased by the 4/5i, IndoA, in hPheo1 cells (Fig. 4B). Similar decreases in these phosphorylation sites were observed in human MTC-SK, TT, and BON cells (Fig. 4C and SI Appendix, Fig. S4). This effect appeared Cdk5 specific as addition of the 4i, IndoB, to multiple NE cell lines had significantly less effect on the phosphorylation states of Thr143 FAM53C, Thr709 FLNB, Ser17 H1.5, and Thr202 LARP6 compared to IndoA. In contrast, phosphorylation of Ser507/Ser811 RB, a known target of multiple Cdns, was decreased upon treatment with both inhibitors. Interestingly, the phosphorylation of the RB family member, RBL1, was more responsive to IndoA than IndoB in TT cells, whereas phosphorylation of Ser391 SUV39H1 was more responsive to IndoA than IndoB in BON cells (Fig. 4C and SI Appendix, Fig. S4). Overall, these data demonstrate that phosphorylation of these six proteins is dependent upon Cdk5 activity and suggests that these phosphorylation sites could serve as biomarkers for many types of Cdk5-driven NE tumors. Attempts to produce antibodies for the remaining seven sites identified by SIP inhibition of cell growth were unsuccessful and therefore the capacity of these sites to serve as biomarkers could not be evaluated.

To determine if these Cdk5-dependent biomarkers occurred in human NE tumors, cohorts of MTC patient tumors and normal human thyroid tissues were compared. Immunoblot analysis revealed that three of the phosphorylation sites, Ser17 H1.5, Thr202 LARP6, and Ser988 RBL1, were significantly elevated in the total tumor population and exhibited a positive correlation with overall Cdk5 expression levels (Fig. 5 A and B). The phosphorylation state of Ser391 SUV39H1 was only increased in a small portion of tumor samples but retained a positive correlation with Cdk5 expression. Distribution of all four phosphosites varied across patients with phospho-LARP6 being the most commonly detected followed by phosphorylation of H1.5 and RBL1, respectively (Fig. 5C). Although 73% of patient tumors exhibited elevated Cdk5 levels, only 21% presented with elevation of all four biomarkers of Cdk5 pathway activity, emphasizing the fact that presence of a protein does not correlate 100% with function of that protein and highlighting the need for direct readouts of pathway activity such as phosphorylation of downstream substrates. Thus, Cdk5-dependent tumorigenic signaling may be considered patient specific. Furthermore, detection of all four biomarkers in a patient could predict positive response to a Cdk5-targeted therapeutic approach.

Cdk5 Inhibitors as Effective Therapeutics in NE Models. To evaluate the efficacy of anti-Cdk5 therapy when administered systemically, IndoA was utilized in multiple animal models of NE cancer. IndoA was chosen for these studies as this compound is more selective for Cdk5 than dinaciclib and more potent than roscovitine and CP681301 (SI Appendix, Fig. S2) (12, 28, 29). First, the transgenic model of MTC driven directly by activation of Cdk5, NSE-p25OE, was treated with vehicle or IndoA (10 to 30 mg/kg body weight [BW]) once every 3 d for 2 wk. Tumor growth was significantly reduced by 20 and 30 mg/kg of IndoA compared to control animals (Fig. 6 A and B). Plasma levels of

Carter et al.
Identification of potential tumorigenic phosphoprotein signaling pathways. (A) Schematic of bitransgenic system for regulated tissue-specific expression of p2SGFP. (B) Diagram of induction paradigm for generation of growing and arrested tumor tissue. (C) Overlay of photograph and GFP fluorescence from analysis by IVIS Spectrum (PerkinElmer) of resected trachea/esophagus with bilateral growing (G) and arrested (A) tumor tissue. (D) Phosphoproteome of mouse MTC tumors represented as a heat map of phosphopeptide levels in growing vs. arrested tumors sorted by protein group as indicated in SI Appendix, Table S1 (73) (y axis) and fold change intensity (x axis). (E) Growth/survival assay of NE cell lines treated with control (0.3% DMSO) or the PEN-SIPs (30 μM) indicated in SI Appendix, Table S2. Error bars represent SEM (n = 7 to 8). (F) Hits selected from E. (G) IPA of hits from E. Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1), a marker of MTC (30), were also reduced in treated animals, indicating therapeutic efficacy (Fig. 6C). As a second model, TT cells derived from a familial case of human MTC were used to generate xenograft tumors in nude mice. As with the transgenic model, IndoA attenuated TT cell tumor progression (Fig. 6 D and E). While CEACAM1 was not detected in the plasma of these animals, levels of chromogranin A (ChA), another marker of MTC (31), were reduced (Fig. 6F). Thus, Cdk5 inhibition blocks the growth of tumors in distinct models of MTC. The efficacy of IndoA was also assessed in a xenograft tumor model generated from human pancreatic NE tumor-derived BON cells (SI Appendix, Fig. S5). IndoA was equally effective in impeding the growth of these tumors, suggesting that targeted Cdk5 therapy could be effective across multiple NE cancer types.

Biomarkers Are Predictive of Response to Anti-Cdk5 Therapy. We hypothesized that the phosphorylation states of the newly identified set of proteins could serve as biomarkers of Cdk5-driven tumors. If true, biomarker-positive tumors should be responsive to Cdk5 inhibitor therapy while biomarker-negative tumors should be nonresponsive. To test this, a cohort of tumors from patient-derived xenograft (PDX) models of mixed origins was analyzed quantitatively for the presence of the common NE markers ChA and neuronal-specific enolase (NSE) (32). Cdk5 pathway components, and putative Cdk5-dependent biomarkers (SI Appendix, Fig. S64). Index scores were assigned based on the population quartiles (0 for quartile 1; 1 for quartile 2; 2 for quartile 3; and 3 for quartile 4), summed together, and used to generate a representative heat map (Fig. 6G and SI Appendix, Table S4). Two models were identified with high biomarker index scores; a large cell NE carcinoma (LCNEC; score 8) model and a nonsmall cell lung cancer (NSCLC; score 6) model. Two Merkel cell models (Merkel 1 and 2) were also identified that exhibited very low biomarker index scores, 0 and 1, respectively. In collaboration with Champions Oncology, cohorts of these four disparate PDX models were treated with IndoA (20 mg/kg), and tumor progression was assessed (Fig. 6 H and I and SI Appendix, Fig. S6 B and C). Initial implantation and growth characteristics of the NSCLC model and the Merkel 1 model were highly comparable and allowed for two full cohorts of eight animals per group to be monitored for 4 wk. Tumor growth of the biomarker-positive NSCLC model was notably attenuated by Cdk5 inhibitor treatment, whereas the biomarker-negative Merkel 1 model had no response (Fig. 6 H and I). Implantation and growth characteristics of the LCNEC and Merkel 2 models were highly variable and allowed only smaller cohorts of 5 to 8 tumor-bearing animals and testing for a 2-wk period. Nonetheless, growth of the biomarker-positive LCNEC model was significantly reduced, whereas growth of the biomarker-negative Merkel 2 model was not (SI Appendix, Fig. S6 B and C). Together, these data strongly support the ability of these biomarkers to predict responsiveness to anti-Cdk5 therapy.

Enhanced Drug Delivery Method. Although transgenic MTC mouse model animals responded favorably to IndoA treatments, tumor regression was not observed. Testing higher doses of IndoA for increased potency was not feasible as cohorts receiving 30 mg/kg BW experienced 50% mortality while both 20 and 30 mg/kg-treated cohorts evidenced some level of liver or kidney toxicity as measured by aspartate aminotransferase (AST) activity (33, 34) and urea levels (35, 36), respectively. (Fig. 7 E and F). To deliver IndoA selectively to tumors and thereby circumvent toxicity issues, we tested a biomimetic nanoparticle-based drug delivery system, leukosomes (LKs), generated from a combination of synthetic phospholipids and leukocyte membrane extracts (37, 38). Traditional nanoparticle delivery systems are dependent...
upon passive targeting through enhanced permeability and retention (EPR) of unhealthy tumor vasculature (39). Although still benefitting from EPR, LKs actively target activated endothelium via chemotactic mechanisms analogous to those utilized by white blood cells (40). Importantly, LKs are successfully camouflaged by leukocyte membrane proteins, leading to lower total opsonization and avoidance of the rapid immune clearance observed with purely synthetic nanoparticle platforms (41–43).

As tumors are generally highly inflamed and attract multiple types of immune cells (44, 45), we tested the ability of LKs to traffic to MTC tumors of NSE-p25OE mice and to stabilize lower doses of IndoA. Using intravitral microscopy, LKs were verified to exhibit increased tumor localization compared to control liposomes (LPs) and to time-dependently spread from the vasculature into surrounding tumor tissue (Fig. 7A and B). Maximum encapsulation of IndoA into LKs had no deleterious effects on particle size or homogeneity (SI Appendix, Fig. S7) and allowed a dosage of 5 mg/kg BW IndoA per retroorbital injection. High performance liquid chromatography/mass spectrometry (HPLC/MS) analysis of blood plasma demonstrated a sixfold stabilization of encapsulated drug compared to free drug at these lower dosage levels (Fig. 7C).

IndoA delivered at 10 mg/kg BW in the free form had no effect on tumor growth in transgenic MTC animals (Fig. 6D). In contrast, delivering only 5 mg/kg BW IndoA encapsulated in LKs had the same effect as delivering 20 mg/kg BW free drug (Figs. 6B and 7D). Thus, the LK delivery system generated an equivalent effect utilizing a 75% lower dosage. LKs also protected animals against hepatic and renal toxicity (Fig. 7E and F). While complete tumor arrest or shrinkage was not observed at 5 mg/kg BW, further modifications to allow higher encapsulation of drug could provide additional benefit for this unique delivery approach.

Discussion

The development of advanced sequencing techniques has led to an explosion of information pertaining to the genomic landscape of cancer. In some cases, this information successfully progressed to the development of personalized medicine. For example, mutations at Val600 in the serine/threonine kinase B-Raf are predictive of response to B-Raf inhibitors in patients with metastatic melanoma (46, 47). However, the majority of B-Raf mutant papillary thyroid cancer and colon cancer patients do not respond to B-Raf-targeted inhibitors (48), emphasizing the
phosphoproteins identified here are potentially directly involved in phosphorylation sites on Cdk5 activity validates them as biomarkers of Cdk5 pathway activity, grouped by individual patient sample. Simple comparisons between two groups of normally distributed data were performed using two-tailed Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.

For NE neoplasms, mutations are prominent in genes encoding the scaffolding protein menin and the receptor tyrosine kinase RET. Menin mutations were initially identified over 20 y ago in patients with multiple endocrine neoplasia (MEN) type 1 syndrome (49, 50). Menin is a broadly expressed tumor suppressor in which mutations typically cause protein truncation (51, 52). Currently there are no therapeutics with the potential to circumvent these mutations.

Mutations in the protooncogene RET were discovered over 20 y ago in patients with MEN2 syndrome (53–55). The development of vandetanib and cabozantinib, tyrosine kinase inhibitors that target RET, generated hope that patients possessing RET mutations could be successfully treated. Unfortunately, human trials revealed no correlation between the presence of a RET mutation and patient response to therapy (56–58).

As with all cancers, many mutations, in addition to RET, are present within each MTC cancer cell. These additional mutations can alter the diverse input nodes of the signaling network that drive cancer cell growth and survival. For these reasons, looking at the signaling network with a broader lens that includes posttranslational modifications could be beneficial and aid in the elimination of “false positive” nonresponders, that would be predicted responders, from genomic or proteomic information alone. The current study reveals that Cdk5 is likely a contributor to at least a portion of all NE tumor types. This study also identifies a set of phosphorylation-based biomarkers which indicate that not only are Cdk5 pathway components present, but Cdk5 is actively modulating the signaling network and regulating cancer physiology. It is important to note that additional experiments will be necessary to determine if each of these proteins are direct targets of Cdk5. Regardless, the dependence of these phosphorylation sites on Cdk5 activity validates them as biomarkers of Cdk5 pathway activation.

In addition to being biomarkers of Cdk5 pathway activity, the phosphoproteins identified here are potentially directly involved in promotion of cell growth and/or survival. For example, RBL1 is a member of the retinoblastoma (RB) family of proteins that includes the tumor suppressor RB and RBL2. The RB family plays a major role in cell cycle regulation and is also involved in modulating senescence, apoptosis, and chromosomal stability (27). Although functional compensation has been observed among the family members, some differences exist. Unlike RB, RBL1 and RBL2 do not bind to activating transcription factors E2F1-3. They interact instead with transcriptional repressors E2F4 and E2F5 (59–61). Remarkably, both RBL1 and RBL2, but not RB, are members of the DREAM complex, a regulatory unit that mediates cell entry into quiescence (62, 63).

Emerging information suggests Cdk5 may play a role in non-NE cancers as well (11). High Cdk5 expression in neuroblastoma, a rare but deadly childhood cancer (64–66), is correlated with worse overall survival, and inhibition of Cdk5 amplifies the potency of Cdk2 inhibitors in neuroblastoma cell lines (67). The Cdk5 gene is amplified in pancreatic ductal adenocarcinoma (PDAC) and blockage of Cdk5 activity inhibits migration and invasion in PDAC cell lines. Involvement of Cdk5 is also implicated in colorectal cancer (68), breast cancer (69), glioblastoma (70), and prostate cancer (71). These findings suggest that Cdk5 is a vulnerable node that can be targeted in most tissues to facilitate cancer development and/or progression and that Cdk5 likely plays a role in subgroups of many cancer types. As the heterogeneity between tumors of the same cancer type is becoming more apparent, the likelihood that treatment approaches will evolve based on individual tumor signaling states instead of general tumor type classification is increasing. The biomarkers identified in this study are not limited to use for NE cancer patients. Indeed, the ovarian and PDAC PDx models analyzed here (Fig. 6G), both non-NE by diagnosis, exhibit high levels of NE features as well as biomarkers of Cdk5 pathway activation.

To be useful clinically, antibodies to detect these biomarkers will need to be developed into an easy-to-use assay that allows reliable quantitation of biomarker levels in patient tumors, preferably in relatively small samples such as core biopsies.
Cdk5-targeted therapy is effective in biomarker (+) tumors. (A) Representative MRIs of NSE-p25OE MTC model mice prior to treatment (Pre-T) or treated for 2 wk with vehicle or 20 mg/kg BW IndoA. Tumors are outlined in yellow. (B) Quantitation of tumor growth over time from MRI of NSE-p25OE MTC mice treated with vehicle (n = 6) or 10 mg/kg (n = 4), 20 mg/kg (n = 6), or 30 mg/kg (n = 3 to 4) BW IndoA. (C) Immunoblot analysis of blood plasma for CEA (CEAM1 (CEA) in vehicle and 20 or 30 mg/kg BW IndoA (4/5i) animals from A. (D) Representative MRIs of TT cell xenograft MTC model mice treated for 2 wk with vehicle or 20 mg/kg BW IndoA. Tumors are marked by yellow arrowheads. (E) Quantitation of tumor growth over time from caliper measurements of TT cell xenograft MTC model mice treated with vehicle or 10 mg/kg or 20 mg/kg BW IndoA (4/5i) animals from B. (D) Representative images of TT cell xenograft MTC model mice treated for 2 wk with vehicle or 20 mg/kg BW IndoA. Tumors are marked by yellow arrowheads. (F) Quantitation of tumor growth over time from MRI of NSE-p25OE MTC model mice treated with vehicle or 20 mg/kg BW IndoA (4/5i) animals from E. (G) Heat map of protein and phosphoprotein population percentile ranking from immunoblot analysis of NE tumors (black bar) and non-NE tumors (red bar) from PDX model mice. (H and I) Quantitation of tumor growth over time from biomarker-negative Merkel 1 (H; n = 8) and biomarker-positive NSCLC (I; n = 8) PDX model mice treated with vehicle or 20 mg/kg BW IndoA (20 mg/kg). All error bars represent SEM. Simple comparisons between two groups of normally distributed data were performed using two-tailed Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.

Current progress in multiplexed assay systems make these platforms especially attractive for clinical analysis of groups of biomarkers from relatively small biological sources. For example, bead-based multianalyte profiling has been employed for the evaluation of 22 cytokines in a single serum sample from cancer patients (72). This technology has the capacity to distinguish up to 100 different analytes per sample and is compatible with several forms of biological samples, including solid tissue lysates. Once a clinically applicable assay platform is generated, additional preclinical surveys for these biomarkers in multiple PDX models, coupled with Cdk5 inhibitor testing, could aid delineation of finite cutoffs for classification of multiple forms of cancer as predicted responders for Cdk5-targeted therapy and validate progression of such an assay, coupled with novel Cdk5 inhibitors, into clinical trials. At this stage, establishment of standard operating procedures for collection, handling, storage, and processing of human tumor samples will be critical for ensuring protein- and phosphoprotein-based biomarker integrity and will facilitate ease of implementation in the clinic. Using a multianalyte platform, analysis of biomarkers for additional oncogenic pathways could be combined with analysis for biomarkers of Cdk5-driven tumors to yield a network readout of the broader signaling state of the tissue. Assessing signaling states across a network of pathways might allow more accurate, stage-dependent, therapeutic decisions to be made for individual patients.

Materials and Methods

Animal Research. All animal work was performed in accordance with the guidelines of the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals under approved protocols by University of Texas...
Southwestern (UTSW), University of Alabama at Birmingham (UAB), and Houston Methodist Research Institute (HMRI) Institutional Animal Care and Use Committees.

Antibody Production and Purification. Phosphopeptides (SIT*SPNRTGC-ASXL2, CAPSKLW*TPKH-FAM53C, CSY*TPVXAIF-FLNB, DAPVEK*SPAK-H1.5, CAN-YE*SPGKI-KNL2, CALA*TPQKNQ-LARP6, CSIY*SPHKN-RBL1, CAGLPG*SPK-SUV39H1; *indicates a phosphorylated residue) were conjugated to *Limulus polyphemus* hemocyanin (Sigma H1757), emulsified with Freund’s adjuvant (Sigma F5881 or F5506), and injected s.c. into New Zealand white rabbits (Charles River Laboratories). Rabbits were boosted once and blood was collected twice over a 5-wk period for 12 mo. Blood was allowed to clot at 4 °C for 24 h, centrifuged at 1,000 x g, and plasma was isolated and stored at −20 °C. Phosphorylation state-specific antibodies were purified from plasma using phosphopeptide affinity columns by elution with 100 mM glycine pH 2.5 into 1 M Tris pH 8.6 (11:1 volume ratio, final 80 mM Tris pH 7.5). Antibodies were dialyzed into 50 mM NaF and 1% SDS with brief sonication. Samples were diluted to equivalent total protein concentrations in 1× Laemmli buffer and separated by SDS/polyacrylamide gel electrophoresis (PAGE). Proteins were transferred onto nitrocellulose for immunoblotting utilizing in-house phosphorylation state-specific antibodies, anti-Cdk5 (sc-173), anti-p35 (sc-820), anti-GAPDH (Sigma G8795), anti-actin (Abcam ab6276), anti-ASXL2 (Abcam ab106540, Sigma sab1407639), anti-Fam53C (Abcam 105679), anti-FLNB (Abnova PAB30702), anti-H1.5 (sc-247158), anti-KNL2 (sc-162587), anti-RBL (sc-318-G), anti-LARP6 (Sigma sab1407657), and anti-SUV39H1 (Sigma S8316). Anti-goat-, rabbit-, and -mouse secondary antibodies conjugated to either IRdye 800RD or IRdye 800CW (LiCor) were used for detection on a LiCor Odyssey Clx. Actin and GAPDH were used as sample processing controls. Other total proteins were probed on the same membrane as phosphoproteins unless antibody conditions did not allow.

Human Tissue Analysis.

Collection. Human tissues were collected with patient consent and in accordance with institutional review board (IRB) regulations. Samples were collected under University of Wisconsin-Madison IRB 2011-0145, MD Anderson IRB PA11-0704, University of Texas Southwestern Medical Center IRB STU102010-042 and STU102010-051, National Institute of Child Health and Development IRB 00-CH-0093, Louisiana State University IRB 5774, and University of Sydney LNR/13/HAWKE/424-1312-417M. All samples were deidentified prior to use.

Histology. Formalin-fixed, paraffin-embedded samples were cut into 5-μm sections, deparaffinized, and subjected to microwave antigen retrieval (citr- rate buffer, pH 6.0). Sections were then stained using standard protocols for H&E or immunostained with antibodies recognizing p35/p25 (sc-820, Santa Cruz Biotechnology) or Cdk5 (308-Cdk5, PhosphoSolutions). For immunostaining, sections were permeabilized with 0.3% Triton X-100, quenched free of endogenous peroxidases, and blocked with 2.5% normal goat serum prior to overnight incubation with primary antibodies at 4 °C. Bound primaries were detected by sequential incubation with biotinylated-secondary anti- sera, streptavidin-peroxidase (Vector Laboratories), and diaminobenzidine chromagen (Dako) following the manufacturer’s directions.

Immunoblot analysis. Tissues were crushed while frozen then lysed in 50 mM NaF and 1% SDS with brief sonication. Samples were diluted to equivalent total protein concentrations in 1× Laemmli buffer and separated by SDS/PAGE. Proteins were transferred onto nitrocellulose for immunoblotting as described above.

Intravital Microscopy. Intravital microscopy (IVM) was performed using an upright Nikon A1R laser scanning confocal microscope with a resonance scanner, motorized and heated stage, and Nikon long-working distance 4x and 20x dry plan-apochromat objectives housed within the IVM Core at the...
LCMS2 Analysis of IndoA.

Extraction. Sera (25 μL) were reconstituted in 25 μL of extraction solution (25% acetonitrile (ACN)/75% H2O), vortexed for 1 min, diluted with 25 μL of 100% ACN, followed by two cycles of vortexing for 1 min and incubating at room temperature (RT) for 10 min. Samples were then diluted with 200 μL of 100% ACN, vortexed for 1 min, then stored at −20 °C overnight. Samples were thawed at RT for ~10 min, centrifuged at 14,000 × g for 10 min at 4 °C to remove cell debris, then supernatants were transferred to 2-mL glass vials and dried down to ~5 μL under argon gas at 25 °C for 25 min. Samples were immediately reconstituted (adjusted to 210 μL) in 25% ACN/1% trifluoroacetic acid (TFA)/74% H2O and centrifuged at 14,000 × g for 10 min at 4 °C to remove any residual debris. The supernatants were then transferred to tinted vials prior to analysis.

LC/MS. Analysis was performed on a Dionex Ultimate 3000 UHPLC+ Focused Stack & Auto Sampler (Thermo Fisher Scientific/Dionex) using a RP C18 Hypersil Gold (100 mm inner diameter (I.D.); 4.6 mm, 5 mm 17 Å pore size; Thermo Fisher Scientific) in-line with an LTQXL mass spectrometer equipped with a heated electrospray ionization source (Thermo Fisher Scientific), and all data were collected in selective reaction monitoring (SRM) mode. The HPLC was configured with binary mobile phases that include solvent A (0.1% TFA/99.9% H2O), and solvent B (0.1% TFA/15% H2O/85% ACN). The gradient program steps were run in linear mode as follows; 0 to 6 min at 75% to 20% B (200 μL/min), 6 to 7 min at 50% to 80% B (200 μL/min), 7 to 11 min at 80% to 90% B (200 μL/min), 11 to 12 min at 90% to 25% B (500 μL/min), and finally 12 to 16 min at 25% B to 20% B (500 μL/min). SRM mode was optimized using a parent ion window of 453.2 ± 1.0 m/z; 20% normalized collision energy, activation energy 15%, and a time of 30 μs; 1.5% parent ion; and a lower limit of 306.5 ± 1.5 m/z. The resultant Xcalibur RAW files were collected in profile mode and the SRM base peak values processed and extracted using Xcalibur version 2.2 sp1.48.

Leukoseome Synthesis and Characterization. LKs were developed as previously reported (38). Briefly, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol (Avanti Polar Lipids) (4:3:3 molar ratio) were dissolved in ethanol at a final lipid concentration of 9 mM and mixed with membrane proteins, previously resuspended in aqueous buffer at 1:50 protein to-lipid concentrations, using a NanoAssemBlr Benchtop platform (Precision NanoSystems, Inc.). Passive loading of IndoA within LKs was obtained by dissolving the drug in the ethanol mixture containing the lipids. Size and polydispersity index were determined using dynamic light scattering analysis using a NanoSIZER 25 (Malvern Instruments). Surface charge (zeta potential) was measured using a ZetaSIZER Nano ZS (Malvern Instruments).

Magnetic Resonance Imaging. MRI conducted at University of Texas Southwestern Medical Center was performed using a 7-Tesla small animal MRI system (Agilent Inc.) with a 40 mm (I.D.) radio frequency (RF) coil and a 400/20 °C (300/4 °C) NMR tube. Magnetic Resonance Imaging (MRI) was performed on the ventral surface of the neck was opened to expose the trachea, salivary glands, and MTC tumors. Tumors were positioned in direct contact with the coverslip, visualized using the GFP signal, and positions were selected for imaging. After selection of positions, Cy5.5-labeled LKs and LPs were administered via retroorbital injection and mice were imaged continuously for 2 h using the 4× objective. Images were quantified using Nikon Elements. The tumor accumulation reported was normalized by dividing the area occupied by LKs or LPs by the area occupied by the tumor within each image.

Immunofluorescence purification of peptides. Lyophilized peptides were dissolved in immunoaffinity purification (IAP) buffer (50 mM Mops pH 7.2, 10 mM sodium phosphate, 50 mM NaCl), sonicated, and insoluble matter was removed by centrifugation. CDK substrate motif antibody (Cell Signaling Technology, 2324) and MAPK2 substrate motif antibody (Cell Signaling Technology, 2325) was coupled to protein A beads (Roche). Immobilized antibody was incubated with peptide mixtures, immunoprecipitation was carried out at 4 °C overnight, then washed with IAP buffer, and eluted with 0.15% TFA. Eluates were further purified using C18 microtips (StageTips and Eppendorf C18 PerfectPure tips) with elution in 60% MeCN, 0.1% TFA, and then lyophilized.

Analysis by LC/MS/MS. Purified peptide mixtures were loaded onto a 10 cm × 75 mm Picofrit capillary column (New Object) packed with Magic C18 AQ reversed-phase fused silica (Michrom Bioresources) using a Famos autosampler with an inert sample injection valve (Dionex). The column was developed with a 45-min gradient of acetonitrile in 0.125% formic acid (Ultimate pump, Dionex), and tandem mass spectra were collected in a data-dependent manner with a Thermo Fisher Scientific LTQ ion trap mass spectrometer equipped with electron transfer dissociation (ETD) module or with an LTQ-Orbitrap Velos mass spectrometer (ThermoFisher Scientific) equipped with an ESI source in the negative ion mode.

Assigning peptide sequences using Sequest. MS/MS spectra were evaluated using TurboSequencher in the Sequest Browser package supplied as part of BioWorks 3.3 (Thermo Fisher Scientific). Searches were performed against the National Center for Biotechnology Information (NCBI) human protein database. Cysteine carboxamidomethylation was specified as a static modification and phosphorylation was allowed as a variable modification on serine and threonine.

Preclinical Drug Testing. A bitransgenic mouse model of MTC was generated as previously described by crossing NSE-rTA and TetOp-p25GFP parental lines (12). Bitransgenic litters were monitored by MRI. Beginning at 10 to 40 mm3 bilateral tumor volume, animals were treated once every 3 d by intraperitoneal (IP) injection with vehicle (0.7% dimethyl sulfoxide (DMSO), 3.4% ETOH, 1.5% Tween 80, and 0.1% H2O in 95% of the weight of 38 µL saline, 1× phosphate buffered saline), 10 mg/kg, 20 mg/kg, or 30 mg/kg BW IndoA. Animals were monitored by MRI for 2 wk then killed 24 h postinjection by CO2 euthanasia and cardiac perfusion with 0.1 mM ammonium molybdate, 5 mM ethylene glycol-bis-(α-aminoethyl)-ether-N,N,N′,N′-tetraacetic acid, 50 mM NaF, 2 mM Na orthovanadate, 10 mM Na pyrophosphate, and protease inhibitors (Sigma S8280) in PBS. Tissues were frozen or fixed in 4% paraformaldehyde for 24 h and submitted for paraaffin embedding. Human BON and TT cell xenograft mouse models were generated by implanting 5e6 BON or TT-RLuc cells s.c. in the NU/NU nude mouse (Crl:NU-Foxn1nu strain) from Jackson Laboratories. Beginning at tumor volumes of 100 to 450 mm3 (average starting sizes between groups varied less than 40 mm3), animals were treated as described above and monitored by caliper measurement for 2 wk. Animals were killed and tissue was processed as described above. All animals were randomly assigned to treatment groups but blinding was not possible.

Scanning Electron Microscopy. Cells were fixed on coverslips with 2.5% (vol/ vol) glutaraldehyde in 0.1 M sodium cacodylate buffer overnight at 4 °C. After three rinses in 0.1 M sodium cacodylate buffer, they were postfixed with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer for 45 min. Cells were rinsed with water and dehydrated with increasing concentration of ethanol, followed by increasing concentrations of hexamethyldisilizane in ethanol. Cells were air dried under the hood, mounted on SEM stubs and sputter coated with gold palladium in a Cressington 108 auto sputter coater. Images were acquired on a field-emission scanning electron microscope (Zeiss Sigma) at 3.00-kV accelerating voltage.

Statistical Analysis. Shapiro–Wilk tests were performed to determine normality of data. Preclinical drug testing in animal models and accumulation of nanoparticles were analyzed by two-way ANOVA with repeated measures. The Holm–Sidak method was used for all ANOVA tests and all indications of significance are for the treatment group over the entire time period, not individual time points. Immunoblots containing more than two conditions, AST assays, and urea assays were analyzed by one-way ANOVA. Immunoblots containing more than two conditions, AST assays, and urea assays were analyzed by one-way ANOVA.

HMR. For imaging, NSE-p25OE mice were anesthetized with isoflurane and the ventral surface of the neck was opened to expose the trachea, salivary glands, and MTC tumors. Tumors were positioned in direct contact with the coverslip, visualized using the GFP signal, and positions were selected for imaging. After selection of positions, Cy5.5-labeled LKs and LPs were administered via retroorbital injection and mice were imaged continuously for 2 h using the 4× objective. Images were quantified using Nikon Elements. The tumor accumulation reported was normalized by dividing the area occupied by LKs or LPs by the area occupied by the tumor within each image.

room temperature. Digests were acidified with 1% TFA and peptides desalted and purified over Sep-Pak C18 columns (Waters, WAT01910) using 40% acetonitrile in 0.1% TFA for elution. Eluates were lyophilized and stored at −80 °C.
between two groups of normally distributed data were performed using two-tailed Student’s t test. Sample sizes are provided within figure legends or in results (P < 0.05, **P < 0.01, ***P < 0.001).

Toxicity Assays. Prior to cardiac perfusion, blood was collected from animal subjects via retroorbital bleeding. Blood was immediately mixed with (ethylenedinitrilotetraacetic acid (10 mM final) then centrifuged at 1,000 g for 10 min at 4 °C to allow isolation of plasma. AST assays (Sigma MA5055) and urea assays (Sigma MAK006) were performed on plasma per the manufacturer’s instructions.

Data Availability. Phosphoproteomic data are deposited in PhosphositePlus (https://www.phosphosite.org/Supplemental_Files.action). Reprints and permissions information is available at www.pnas.org. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to J.A.B. (jibibb@uab.edu).

ACKNOWLEDGMENTS. We thank Melanie Cobb, Joseph Goldstein, John Minna, Roswita Pfranger, and Courtney Townsend for cell lines and Eric Knudsen for primary fibroblast cultures. We thank Haydn Ball and the University of Texas Southwestern Medical Center (UTSW) Protein Technology Facility for peptide synthesis, the UTSW Animal Resource Center for antigen injection and blood collection, Robyn Leidel and Kate Luby-Phelps for help with SEM, Kelly Hartman for assistance with leukosome preparation, John Totenhagen and Samurah Thomas and the University of Alabama at Birmingham (UAB) Small Animal Imaging Facility for additional MRI, and HMRI Intravital Microscopy Core for IVM. We thank Champions Oncology for PDx tissue and preclinical testing in PDx models, and Pfizer for CP681301. We thank Peter Kipp for collegial advice and support. We thank Eckard Wimmer for his contribution to this work. This work was supported by an American Cancer Society Postdoctoral Fellowship (A.M.C.) and the Sackler Foundation (A.M.C. and J.A.B.); a North American Neuroendocrine Tumor Society fellowship (K. Pozo); NIH award S10OD023552-01 (M.T.); an American Thyroid Association Research Grant and the Dedman Family Scholar in Clinical Care Award (B.C.O.); an American Cancer Society Institutional Research Grant Junior Faculty Development Award (S.R.) and the SDHB PheoPara Coalition (S.R. and J.A.B.); a North American Neuroendocrine Tumor Society/Neuroendocrine Tumor Research Foundation Basic/Translational Science Investigator Award (R.J.-S.); the William Randolph Heart Foundation, the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation, Cancer Prevention & Research Institute of Texas Award ID RP170466, and National Cancer Institute (NCI) and the Office of Research on Women’s Health Grant 1R56CA213859 (E.T.); an American Cancer Society Research Scholars Award, and NIH awards DA033485-01, MH083711-01, NS073855-01, and R56MH116896 (J.A.B.); and NCI awards SPOCA142543 (UT3W Simulation and Image Processing Center) and P30CA013148 (UAB O’Neal Comprehensive Cancer Center).

Preclinical characterization of tyrosine kinase inhibitor-based targeted therapies for neuroendocrine thyroid cancer

Karine Pozo1,2, Stefan Zahler3, Keisuke Ishimatsu4, Angela M. Carter5, Rahul Telange5, Chunfeng Tan6, Shuaijun Wang3, Roswitha Pfragner7, Junya Fujimoto8, Elizabeth Gardner Grubbs9, Masaya Takahashi4, Sarah C. Oltmann2 and James A. Bibb5,10

1 Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas TX, USA
2 Department of Surgery, The University of Texas Southwestern Medical Center, Dallas TX, USA
3 Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
4 Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX, USA
5 Department of Surgery, The University of Alabama, Birmingham AL, USA
6 Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX, USA
7 Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
8 Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston TX, USA
9 Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, USA
10 Comprehensive Cancer Center, The University of Alabama at Birmingham Medical Center, Birmingham AL, USA

Correspondence to: James A. Bibb, email: jbibb@uab.edu

Keywords: medullary thyroid carcinoma; tyrosine kinase inhibitors; vandetanib; targeted therapy; animal model

Received: September 17, 2018 Accepted: December 05, 2018 Published: [Year]

Copyright: Pozo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Medullary thyroid carcinoma (MTC) is a slow growing neuroendocrine (NE) tumor for which few treatment options are available. Its incidence is rising and mortality rates have remained unchanged for decades. Increasing the repertoire of available treatments is thus crucial to manage MTC progression. Scarcity of patient samples and of relevant animal models are two challenges that have limited the development of effective non-surgical treatments. Here we use a clinically accurate mouse model of MTC to assess the effects and mode of action of the tyrosine kinase inhibitor (TKI) Vandetanib, one of only two drugs currently available to treat MTC. Effects on tumor progression, histopathology, and tumorigenic signaling were evaluated. Vandetanib blocked MTC growth through an anti-angiogenic mechanism. Furthermore, Vandetanib had an apparent anti-angiogenic effect in a patient MTC sample. Vandetanib displayed minimal anti-proliferative effects in vivo and in human and mouse MTC tumor-derived cells. Based on these results, we evaluated the second-generation TKI, Nintedanib, alone and in combination with the histone deacetylase (HDAC) inhibitor, Romidepsin, as potential alternative treatments to Vandetanib. Nintedanib showed an anti-angiogenic effect while Romidepsin decreased proliferation. Mechanistically, TKIs attenuated RET-, VEGFR2- and PI3K/AKT/FOXO signaling cascades. Nintedanib alone or in combination with Romidepsin, but not Vandetanib, inhibited mTOR signaling suggesting Nintedanib may have broader anti-cancer applicability. These findings validate the MTC mouse model as a clinically relevant platform for preclinical drug testing and reveal the modes of action and limitations of TKI therapies.
INTRODUCTION

MTC is a rare indolent cancer derived from calcitonin secreting C-cells of the thyroid gland, which occurs either as a sporadic or hereditary disease [1]. Most MTC patients carry activating mutations in the Rearranged-during-transfection (RET) gene, which encodes a receptor tyrosine kinase [2, 3]. Therefore, therapeutics that target RET have been developed [4]. Two TKIs, Vandetanib and Cabozantinib, have been approved for the treatment of advanced MTC patients [5–7]. Limited drug responses as well as drug-associated adverse events have limited the number of patients for which these treatments can be used [8]. Furthermore, resistance to TKIs is common and their efficacy in stopping disease progression is not ideal [9]. Thus expanding the repertoire of therapies available for the treatment of MTC and other NE cancers is essential. In particular, defining the mode of action of current MTC drugs would advance our understanding of relevant oncogenic signaling pathways and could suggest additional drugs or combinations to more effectively treat these cancers.

Vandetanib was the first drug approved for MTC treatment in 2011 [5, 10]. It is a first generation TKI with demonstrated cross-specificity for VEGF, RET and EGF receptors [3]. However, its modes of action in MTC have not been well defined. Earlier work in cultured MTC cells as well as preclinical MTC mouse and Drosophila models indicated that Vandetanib impedes MTC proliferation via RET inhibition [11–13]. Paradoxically, Vandetanib response does not correlate clearly with patient’s RET-mutational status, as indicated by a randomized phase III clinical trial [14]. Overall, the efficacy of Vandetanib appears to be limited to an undefined patient subpopulation. Thus insight into the mechanisms of action of Vandetanib could guide the development of more effective therapeutic strategies.

Given the limitations of the drugs currently available for clinical application, it is understandable that alternative TKI therapies are the subject of active investigation. For example, the second generation TKI, Nintedanib is a multi-kinase inhibitor that has been approved for the treatment of idiopathic pulmonary fibrosis [15] and is currently undergoing phase 2 clinical trials for MTC in Europe (ClinicalTrials.gov Identifier: NCT01788982). Nintedanib targets VEGF, FGF, and PDGF receptors [16], and blocks angiogenesis, the process by which new blood vessels form within tumors, and does not exhibit the common adverse events associated TKI. Although Nintedanib shares common targets with Vandetanib, the anti-cancer effects of these two TKIs have not previously been compared.

We have recently developed a clinically relevant mouse model of MTC in which transgenic overexpression of p25-GFP, a cyclin-dependent kinase 5 (Cdk5) activator causes MTC. Oncogenic signaling pathways that are downstream of Cdk5 and drive mouse MTC growth are also detected in sporadic MTC patients [17, 18]. In particular, p25 expression leads to inactivation of the tumor suppressor, retinoblastoma protein (Rb) and deregulated expression of cell cycle proteins, both in the mouse model tumors and in MTC patients. Here we use this animal model to characterize and compare the anti-cancer effect and modes of action of an established MTC drug, i.e., Vandetanib, and that of two experimental TKI-based MTC treatments, Nintedanib alone and in combination with the HDAC inhibitor, Romidepsin, which has previously been co-administrated with TKIs.

RESULTS

In vivo monitoring of mouse tumor growth by magnetic resonance imaging (MRI)

An animal model commonly used for preclinical testing of anti-cancer therapies is one in which human cells are injected subcutaneously in immunocompromised mice and tumor growth is followed manually by measurement with calipers. In contrast, NSE/p25-GFP mouse tumors are smaller and arise spontaneously within the thyroid gland, dorsal to the salivary glands [17]. Advanced in vivo imaging techniques such as MRI allow monitoring tumor progression in this model. To determine the optimal conditions at which to conduct preclinical drug testing, we monitored tumor volume in vivo by MRI starting 9 weeks after induction of p25-GFP expression (see Materials and Methods), when tumors become detectable (Figure 1A). Tumors developed from the thyroid gland as bilateral masses on each side of the trachea [17]. Initial tumor growth was slow, consistent with a neuroendocrine phenotype. Starting approximately 14 weeks after transgene induction, tumor growth accelerated and tumor volumes at least doubled over a 2-week period (Figure 1B). Average volumes increased from 18.8 ± 6.8 mm³ at week 14 to 47.5 ± 15.9 mm³ at week 16. Despite growth heterogeneity between littermates, tumor volumes doubled within a 2-week period in all animals when tumor volumes reached 5-10 mm³. Therefore, preclinical testing of anti-cancer drugs was started about 14 weeks after transgene induction and when tumor volume was at least 5-10 mm³.

Anti-cancer effects of Vandetanib are mediated by disruption of tumor vasculature

As an important first step, Vandetanib, a drug currently in clinical use to treat MTC, was used to treat MTC model mice. Initial tumor volume was determined and either Vandetanib or control vehicle was administered for 2 weeks. Tumor volumes increased by 3.2-fold in the vehicle-treated animals during this period, whereas tumor volumes increased only by 1.2-fold in the Vandetanib-treated animals (Figure 2A). Subjects treated
with vehicle alone exhibited severe signs of morbidity necessitating euthanasia. However, tumor progression remained minimal in animals subjected to an additional 2 weeks of Vandetanib treatment (4 weeks total, Figure 2B). Resumption of tumor growth was apparent upon discontinuation of Vandetanib administration.

We have previously demonstrated that mouse tumors and MTC patient samples were indistinguishable with regard to the activation of a number of oncogenic signaling pathways [17]. For example activated RET, a hallmark of MTC, is detected in mouse MTCs as evidenced by pY1062 RET immunoreactivity (Figure 2C). Also RET signaling was disrupted in Vandetanib-treated animals as evidenced by decreased phosphorylation of RET at Tyr-1062. Furthermore, VEGFR2 inactivation occurred, as determined by attenuation in phosphorylation of this receptor tyrosine kinase (RTK) at Tyr-1115. These effects were accompanied by reduced activating phosphorylation of ERK1/2. These effects were consistent with the established role of Vandetanib as a VEGFR2 and RET inhibitor [11]. These data demonstrate that the MTC mouse model is suitable to test and characterize the modes of action of Vandetanib as well as other RET inhibitors or alternative anti-cancer therapies.

Histological analysis of the tumors by H&E and Hoechst staining revealed numerous necrotic areas and reduced cellular density (Figure 2D). To better understand these effects, microvessel density was evaluated by staining CD31-positive endothelial cells within tumors. Microvessel density was reduced 3.5-fold in Vandetanib-treated animals compared to controls. These data indicate that Vandetanib invokes an anti-angiogenic response in MTC tumors as a major mode of action. This is consistent with the known spectrum of Vandetanib as a VEGFR2 inhibitor and the well-characterized role of that receptor in tumor angiogenesis.

Despite the anti-angiogenic effects revealed here, Vandetanib was initially developed as a RET inhibitor with anti-proliferative potential. To evaluate this mode of action, cell proliferation was assessed by Ki67 staining. Surprisingly, cell proliferation was unaffected by Vandetanib treatment compared to vehicle-treated controls (Figure 2D). Together these findings suggest that Vandetanib acts by disrupting tumor vasculature, resulting in tumor tissue necrosis, without directly affecting cell growth and total tumor volume.

To determine if this effect occurs in humans, we obtained very rare pathology samples from a single MTC patient biopsied before and after treatment with Vandetanib. Interestingly, microvessel density within these samples was reduced after treatment, which is similar to the effects observed in MTC model mice (Figure 2E). These results, albeit from a very rare single human case, support that Vandetanib may act primarily as an anti-angiogenic drug and, that our MTC mouse model is clinically relevant and can be used for the preclinical testing of anti-cancer therapies.

Given the lack of effect of Vandetanib on cell proliferation in mouse tumors, we examined how Vandetanib impacted the proliferation of cultured MTC cells derived from our mouse model (MTCp25OE) [17] as well as two cell lines derived from non-RET mutated sporadic human MTC (MTC-SK and SIN-J) (Figure 3A) [18, 19]. Previous studies showed the proliferation of these human cell lines to be Cdk5-dependent [17]. MTCp25OE cells were not inhibited by 1 μM Vandetanib, although anti-proliferative effects were achieved at a concentration of 10 μM. Effects at both 1 and 10 μM were limited in

Figure 1: Mouse MTC tumor growth monitored in vivo by MRI. (A) Representative MRI images of tumors at 10, 12, 14 and 17 weeks after transgene induction (see Methods). (B) Quantification of tumor volumes shows tumor growth over time after transgene induction, N = 4.
Figure 2: Evaluation of Vandetanib anti-tumor effect in a MTC mouse model. (A) Analysis of tumor volumes after a 2-week treatment with either Vandetanib (25 mg/kg/day, Van, o.g.) (N = 5) or vehicle (Veh, o.g.) (N = 6). (B) Monitoring of tumor volumes by MRI during 6-weeks. Mice were dosed with Vandetanib (25 mg/kg/day, i.p.) (N = 4) or vehicle (i.p.) (N = 4) for 4 weeks and treatment was stopped for the next 2 weeks. (C) Immunoblot analysis of tumor lysates after a 3-week Vandetanib or vehicle treatment. (N = 3) (D) Immunohistological analysis of tumors for CD31 and Ki67 and quantifications after a 3-week Vandetanib or vehicle treatment. (E) CD31 staining and quantification of a MTC patient tumor biopsy before and after Vandetanib treatment. Scale bars are 100 μm. Arrows indicate microvessels.
both MTC-SK and SIN-J human sporadic MTC cell lines. These results further support that Vandetanib lacks strong anti-proliferative capacity toward sporadic forms of MTC, which depend upon aberrant Cdk5 activity for proliferation and do not harbor known RET mutations.

Mutations that constitutively activate RET are always detected in familial forms of MTC and Multiple Endocrine Neoplasia (MEN) 2A and the proliferation of MEN2 patient-derived MTC cell lines is inhibited by Vandetanib [20]. To determine if Vandetanib has stronger anti-proliferative effects in MTC cells harboring RET mutations, we compared the dose-dependent effects of Vandetanib on sporadic (MTC-SK) and familial (TT) MTC cell lines (Figure 3B). A concentration of 1 μM Vandetanib inhibited TT cell proliferation by >50% while it did not stop MTC-SK cell proliferation (Figure 3A, 3B). This observation indicates that Vandetanib exhibits greater potency toward RET-mutated TT cells compared to sporadic MTC-SK cells. This suggests that Vandetanib anti-proliferative properties are dependent on the RET mutation status in cultured MTC cell lines. However the anti-angiogenic properties of the drug may predominate over anti-proliferative effects in vivo, given that RET mutational status in MTC patients does not correlate with responsiveness to Vandetanib treatment [14].

Evaluation of a second-generation TKI, Nintedanib as a treatment for MTC

Having found that Vandetanib acts via anti-angiogenesis and to expand the repertory of drugs available for MTC patient treatment, we decided to test a TKI with proven anti-angiogenic properties. Nintedanib antagonizes RET and VEGF receptors and blocks

Figure 3: Analysis of Vandetanib anti-proliferative effect in cultured MTC cells. (A) Proliferation assay of MTC cell lines treated with Vandetanib. (B) Cell survival assay and dose-response curve of TT cells and MTC-SK cells after a 6-day Vandetanib treatment. N = 2 experiments, N = 3 replicates/experiment.
endothelial cell proliferation and tumor growth in mouse models of pancreatic and lung cancers [16, 21]. In our MTC animal model, Nintedanib arrested tumor growth across a 4-week treatment period compared to vehicle-treated controls (Figure 4A). Furthermore, Nintedanib showed the same tumor progression inhibition capability as Vandetanib across 3 weeks of treatment (Figure 4B). To determine if the Nintedanib inhibitory effect was dependent on continuous drug administration, treatment was interrupted for 2 weeks (Figure 4A). As previously seen for Vandetanib, tumors resumed growth once Nintedanib treatment was discontinued. Histological examination of tumors after a 3-week Nintedanib regimen revealed necrosis, tissue disorganization and a 5-fold reduction in CD31-positive cells (Figure 4C). Thus the anti-angiogenic effect of Nintedanib was greater than that of Vandetanib (Figure 2D) and was accompanied by a statistical significant attenuation in cancer cell proliferation as evidenced by a 1.5-fold reduction in Ki67 signal (Figure 4C). Consistent with its anti-angiogenic effects, Nintedanib therapy also reduced phosphorylation of RET, VEGFR2, and ERK1/2 in MTC tumors (Figure 4D).

To further characterize the anti-proliferative effect of Nintedanib, MTCp25OE cells were treated with the drug for 2-4 days. Cell proliferation was inhibited by 1 μM Nintedanib while 10 μM drug caused cell death (Figure 4E), thereby confirming that Nintedanib exerts anti-proliferative effect on cancer cells. As a second set of experiments, the effects of Nintedanib on RET-mutated familial MTC-derived TT cell growth was compared to that of Vandetanib. In dose-response analysis, Nintedanib exhibited 10-fold greater anti-proliferation potency than Vandetanib (Supplementary Figure 1) with IC_{50} values (±SEM) of 0.12 (±0.05) μM for Nintedanib and 1.09 (±0.28) μM for Vandetanib. Thus Nintedanib has stronger anti-proliferative properties than Vandetanib in sporadic and RET-mutated familial cultured MTC cells and in our MTC mouse model. Overall our observations indicate that Nintedanib may have stronger anti-cancer effects than Vandetanib but with no improved outcome on decreasing tumor volume, which suggests that Nintedanib and Vandetanib may have distinct mechanisms of action.

Preclinical evaluation of a combination TKI/HDAC inhibitor therapy for MTC

Both Nintedanib and Vandetanib have strong anti-angiogenic effects in vivo while exhibiting no to moderate anti-proliferation properties. HDAC inhibitors are considered promising anti-mitotic agents, which may render solid tumors more vulnerable to other anti-cancer therapies. Romidepsin is an FDA approved HDAC inhibitor which exhibited synergistic inhibitory effects with TKIs in the treatment of non-small cell lung cancer (NSCLC) in preclinical models [22–24] and in clinical trials [25]. We tested the anti-proliferative effect of Romidepsin on mouse MTC cells in culture. A 50% reduction in cell growth was achieved at a concentration of 100 nM (Figure 5A). We then evaluated the anti-tumor effects of Romidepsin alone and in combination with Nintedanib in vivo. Romidepsin treatment exhibited a trend toward reduction of MTC tumor growth (Figure 5B). Combinatorial treatment with Romidepsin and Nintedanib slowed tumor growth but showed no improved effect on measured tumor volume compared to Nintedanib alone. Romidepsin reduced Ki67 values by 1.5-fold (Figure 5C), which was comparable to Nintedanib effect on Ki67 values. Importantly, the combination caused a 2.7-fold decrease in this marker of cell proliferation, thereby showing a synergistic effect of combined treatments on cell proliferation. However, Romidepsin did not significantly reduce microvessel density while Nintedanib alone or in combination lowered CD31 staining.

Romidepsin had no effect on phosphorylation of RET, VEGFR2, or ERK1/2 while Vandetanib alone or in combination with Romidepsin lowered these signals, consistent with the previous results (Figure 5D). Importantly, the level of de-acetylated histone H4 was increased in tumors from Romidepsin and Romidepsin + Nintedanib treated animal but not in those treated with Nintedanib alone. These observations confirm that Romidepsin blocks HDAC activity as expected but not RTK signaling, while the combination of Romidepsin and Nintedanib blocked both HDAC and RTK signaling. While Romidepsin and Nintedanib synergized mechanistically, the combination therapy did not decrease tumor volume more efficiently than Nintedanib alone.

To better understand the relationship between drug administration and tumor response from the perspective of intermittent treatments, such as those experienced by patients, MTC model mice were treated for extended periods with cycles of drug treatment and removal (Supplementary Figure 2). After 3 cycles, tumors appeared to achieve resistance to the drug. Together with the other results presented here, these observations indicate that chronic Nintedanib treatment is necessary to block tumor growth but that tumors may eventually become resistant to the drug.

Nintedanib and Vandetanib inhibit PI3K/AKT signaling

Vandetanib and Nintedanib antagonize RET signaling, block tumor development but exhibit different anti-proliferative effects on tumor cells. These observations suggest that the mode of action of Vandetanib and Nintedanib are not identical and mediated not only via RET-dependent but also via RET-independent signaling pathways. The PI3K/AKT pathway is commonly deregulated in thyroid cancers, including MTC [26, 27]. Therefore, we examine how TKI-and HDAC-based treatments affect PI3K/AKT signaling

www.oncotarget.com 6 Oncotarget
Figure 4: Evaluation of Nintedanib anti-MTC tumor and cell anti-proliferation effects. (A) Effects on tumor volume monitored by MRI over 6-weeks. Mice were dosed with Nintedanib (35 mg/kg/day, i.p., Nin) (N = 3) or vehicle for 4 weeks (N = 3) and treatment was stopped for the next 2 weeks. (B) MRI-monitoring of tumor growth during a 3-week treatment with either Vandetanib (25 mg/kg/day, o.g.) (N = 4), Nintedanib (100 mg/kg/day, o.g.) (N = 4) or vehicle (N = 3). (*p=0.0031, one-way ANOVA, Bonferroni’s post hoc, week 3) (C) Immunohistological analysis of tumors for CD31 and Ki67 and quantifications after a 3-week Nintedanib or vehicle treatment. Scale bars are 100 μm, (N = 4). (D) Immunoblot analysis of tumors after a 3-week treatment with Nintedanib or vehicle (N = 3). (E) Proliferation assay of MTC cell lines treated with Nintedanib. N = 2 experiments, N = 3 replicates/experiment.
Figure 5: Analysis of Nintedanib/Romidepsin anti-tumor effect on MTC proliferation. (A) Cell survival analysis of MTCp25OE following treatment with increasing Romidepsin concentrations (**p<0.0001, one-way ANOVA, Bonferroni’s post hoc). (B) Monitoring of tumor volumes by MRI during a 3-week treatment with Nintedanib (35 mg/kg/day i.p.) (N = 5), Romidepsin (0.78 mg/kg/day, i.p.) (N = 5), or Nintedanib (35 mg/kg/day, i.p.) + Romidepsin (0.38 mg/kg/day, i.p., Com) (N = 10) or vehicle (i.p.) (N = 11) (**p<0.005, one-way ANOVA, Bonferroni’s post hoc, week 3). (C) Immunohistological analysis of tumors for CD31 and Ki67 and quantifications after a 3-week treatment with either Romidepsin or Nintedanib + Romidepsin (Rom), or vehicle. Scale bars are 100 μm. (D) Immunoblot analysis of tumors after a 3-week treatment with vehicle, Nintedanib + Romidepsin, Romidepsin, or Nintedanib (N = 3).
cascades (Figure 6). AKT phosphorylation at Thr308 (phospho-Thr308) and Ser473 (phospho-Ser473) were detected in all mouse MTC tumors, demonstrating that the PI3K/AKT pathway is activated in these tumors, as observed in MTC patients [28, 29] (Figure 6A). Phospho-Thr308 AKT was reduced in tumors from Vandetanib, Nintedanib, and Nintedanib + Romidepsin treated mice, but not in mice treated with Romidepsin alone in comparison with vehicle-treated MTC mice. Phospho-Ser473 remained unchanged. These findings indicate that TKI-based treatments inhibited the PI3K/AKT pathway, and support the observation that phospho-Thr308 is a better marker of AKT activity than phospho-Ser473 [29]. Consistent with these effects, phosphorylation of FOXO1, an AKT downstream target, was reduced upon treatment with TKIs but not Romidepsin alone (Figure 6B). To investigate further the effect of TKI-based treatments on PI3K/AKT pathways, we examined the activation state of the mTOR signaling cascade, which is another well-characterized PI3K/AKT downstream target (Figure 6C). Nintedanib alone or in combination with Romidepsin inhibited mTOR signaling as evidenced by a decrease in the phosphorylation of mTOR downstream effectors, S6K and 4EBP-1. Interestingly, Vandetanib had no effects on mTOR. Together these findings indicate that Vandetanib and Nintedanib use different mechanisms downstream of PI3K/AKT to stop MTC growth, although the two TKIs show several mechanistic similarities. These data also suggest that mTOR targeting is dependent on the type of TKI that is administered.

DISCUSSION

Here we conducted in vivo studies using a unique animal model of MTC to examine the anti-cancer effects of Vandetanib, one of only two drugs approved for MTC therapy. Biopsies and histological evaluations are rarely performed during or following chemotherapy treatment, and surprisingly few preclinical studies have examined the mode of action of TKIs in MTC. The MTC mouse model used here encompasses molecular and physical features related to sporadic MTC patients, which represent 75% of all MTC cases. The model exhibited responses to Vandetanib and histological effects consistent with those observed in human patients. Thus our mouse model of MTC appears valid for the preclinical testing of drug treatments for MTC. Investigations with this model could provide insight regarding the modes of action, doses, and administration schedules prior to testing in cancer patients [30].
The impetus behind Vandetanib use as a MTC therapy stemmed from its inhibition profile which included antagonization of RET, the oncogene product often regarded as the main MTC driver [1, 11, 31]. Here we found that Vandetanib stopped tumor growth in vivo by causing necrosis, while having no effect on MTC cell proliferation. This observation indicates that the mode of action of Vandetanib is primarily through tumor associated-endothelial cells and subsequent blood vasculature reduction rather than via direct inhibition of RET in MTC tumor cells, as previously observed in preclinical model of colon cancers [30]. Likewise, the RET-targeting TKI, Sunitinib, mediates its renal cell carcinoma anti-tumor effect via tumor-associated endothelial cells and not tumor cells [32]. In neuroblastoma, Vandetanib exerts a dual action by targeting VEGF receptors on tumor endothelial cells and RET on tumor cells as demonstrated in neuroblastoma [33]. Together with our observations, these studies shows that TKIs do not always directly target tumor cells as may be expected from cell culture studies, but instead may target either the tumor microenvironment, tumor cells, or both. Characterizing the microenvironment of MTC tumors may help define markers and thus stratify patients so that those likely to benefit from Vandetanib treatment may be identified. It would also be of interest to determine if the recently developed and very specific RET inhibitors, BLU-667 and LOXO-292 [4] exhibit improved anti-angiogenic and antiproliferative properties compared to Vandetanib and Nintedanib in vivo and in cell culture conditions.

The PI3K/AKT pathway has emerged as a valid cancer drug target. In particular, targeting the PI3K/AKT/mTOR pathways using mTOR inhibitors improved progression-free survival in patients with advanced pancreatic neuroendocrine tumors [34]. Here we show that Vandetanib inhibits the PI3K/AKT/FOXO1 pathway but not the PI3K/AKT/mTOR pathway in MTC mouse tumors. These observations support the rationale of combining Vandetanib and an mTOR inhibitor to improve MTC treatment, an approach that is underway in current clinical trials (see clinicaltrial.gov Identifier NCT01582191). Preclinical studies in colon cancer mouse models have demonstrated that the doses and administration schedules (e.g., sequential or concurrent) of Vandetanib or drug combination could change the treatment outcome [13, 30]. Furthermore, Nintedanib, which blocks VEGFR2, RET, ERK1,2 and PI3K/AKT/FOXO1 like Vandetanib, also inhibits PI3K/AKT/mTOR, but may still have limited long-term anti-tumor effects on MTC due to the development of resistance. Therefore determining the right doses and best schedule may be crucial for the success of a Vandetanib/mTOR inhibitor clinical trial. It may also be important to determine if a Vandetanib/mTOR inhibitor combination or a Nintedanib monotherapy is the most beneficial through future patient-centered studies. Regardless, targeted therapies other than TKIs that affects these pathways should be explored further. For example, the inhibitor of the molecular chaperone HSP90 (AUY922) targets RET and mTOR signaling and inhibits the growth of cultured MTC cell lines [35].

While Vandetanib and Nintedanib both stopped tumor development, they had weaker effects than expected on tumor cell proliferation based on previously published studies [20]. We hypothesized that combining these TKIs with an antiproliferative drug could improve TKI efficacy on MTC mouse tumor development. We chose the cyclic HDAC inhibitor Romidepsin to test in combination with Nintedanib. Although tumor cell proliferation and microvessel density were decreased, synergistic effects of the two drugs in vivo did not occur under our experimental conditions. In fact the overall effect on tumor growth was similar to that observed for Nintedanib alone. Although HDACs have shown promise as combinatorial treatment components, they bring the added complication of potentially problematic side effects at the doses that may be required for efficacy when used in the context of other drug burdens.

The TKIs tested here caused histological changes in the tumors with large necrotic areas arising. However a survey of apoptotic markers in our mouse tumors yielded negative results (data not shown). This did not exclude necroptosis as an additional mode of action in these tumors. Our data suggests that the use of Nintedanib in combination with Romidepsin for MTC is unwarranted. However, other cytotoxic drugs might be combined with Vandetanib or Nintedanib administration. For example, irrotonic was used successfully in preclinical models of colon cancer [30]. Also, Aurora kinase inhibitors have shown strong anti-tumor effects in several types of cancer [36, 37]. Testing these drugs preclinically in our animal model will provide future insight into the potency of these combinations.

The limited effects of Vandetanib and Nintedanib on sporadic MTC cell proliferation suggest that targeted therapies other than TKIs should be further explored. Given the role of Cdk5 in MTC proliferation [17] and in angiogenesis [38], Cdk5 inhibitors might be considered as therapeutic drugs to be used alone or in combination with a TKI such as Nintedanib. In recent years, numerous therapies, including antibody-drug conjugates, immune checkpoint therapies and peptide receptor radionuclide therapy, which have potential applications for MTC treatment [4] have been developed. Some have been approved by the FDA for other clinical applications than MTC. Given the lack of therapeutic options available for MTC patients it will be important to determine if these drugs can be re-purposed and fast-track approved for MTC therapy.

MATERIALS AND METHODS

Mouse line

NSE-tTA/tetOp-p25-GFP bi-transgenic mice were derived by crossing NSE-tTA and the tetOp-p25-GFP mouse lines as previously described [17]. In this system,
p25-GFP expression is controlled by a tetracycline response element (TRE), which is activated by binding of a tetracycline transactivator (tTA). In presence of doxycycline (Dox), tTA binds to Dox instead of the TRE. Dox (100 mg/ml) is added to drinking water until weaning. Tumor growth is induced by removing Dox. All procedures were approved by the Institutional Animal Care and Use Committees of the University of Texas and University of Alabama Birmingham conducted in accordance with the applicable portions of the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Human samples

Lymph node MTC metastasis were obtained after written informed consent from the patient was obtained.

Drugs

Vandetanib (#V-9402) and Nintedanib (#N-9077) were obtained from LC Laboratories. Romidepsin (#3515) was purchased from Tocris R&D.

Animal testing

Unless stated otherwise, drugs were administered by intra-peritoneal (i.p.) injections. Drug doses were determined based on published studies [39–41] (see also Supplementary Figure 3) and were as indicated in the Figure legends. Due to adverse events, Romidepsin was used at 0.78 mg/kg/day instead of 1.2 mg/kg/day [22] for monotherapy. Vandetanib and Nintedanib were administered initially by oral gavage (o.g.) 6 days/week for experiments lasting up to 3 weeks. TKI administration was switched to i.p. injections 6 days/week when treatment protocols were over 3-weeks. Before switching from o.g. to i.p. administration, we confirmed that the doses administered using the different routes led to comparable antitumor effects (Supplementary Figure 3). Romidepsin was always administered i.p. twice a week. For combinatorial treatment, Romidepsin was injected i.p. twice a week and Nintedanib 3 times a week. Romidepsin and Nintedanib were not injected on the same day. No drug was administered on the day that mice were imaged. Vandetanib and Nintedanib were solubilized in citrate buffer pH 6.2 and pH 4, respectively. Romidepsin was dissolved in DMSO and diluted in PBS.

Magnetic resonance imaging

All MRI studies were conducted in a 7T small-animal scanner with a 38-mm inner diameter radio frequency (RF) coil (Agilent, Palo Alto, Calif). Under anesthesia with 1-2% isoflurane (Aerrane; Baxter Health Care, Deerfield, Ill) mixed in 100% oxygen, all animals were placed supine with the thyroid centered with respect to the center of the RF coil. Following initial localization, high-resolution axial T2W images were obtained to cover the entire thyroid with a fast spin-echo sequence. The imaging parameters were: repetition time = 2500 ms, effective echo time = 40 ms, field of view = 32 mm, matrix size = 256 (125 μm in-plane resolution), slice thickness = 1 mm, gapless, number of excitations = 8, affording a total scan time of 10 min 45 s. For analysis, the entire volume of the tumor was measured by means of manual segmentation on the T2W image in all slices. All image processing was conducted using an imaging processing software (ImageJ, version 1.50i).

Tissue collection

At the end of treatments, or if animals were in distress, animals were culled by asphyxia using CO₂ and perfused using PBS containing protease and phosphatase inhibitors as described [17]. One side of the tumor was fixed in 4% paraformaldehyde (PFA) for 48 h prior to paraffin embedding and the other side was frozen in dry-ice upon collection.

Immunoblotting

Quantitative immunoblot analyses were conducted using standard procedures [17]. Antibodies directed to ERK1/2 (#9102), phospho-ERK1/2 (#9101), VEGFR2 (#9698), phospho-VEGFR2 Tyr1115 (#3770), acetyl-histone H4 Lys8 (#2594), phospho-AKT Thr308 (#4056), phospho-AKT Ser473 (#4691), phospho-FOXO1 Ser256 (#9461), FOXO1 (#2880), phospho-4EBP1 Thr37/46 (#2855), phospho-S6K Ser235/236 (#4858) were purchased from Cell Signaling Technology and used at dilutions of 1:1000. Antibodies to RET (#ab134100) and phospho-RET Tyr 1062 (#ab51103) were purchased from Abcam and used at dilutions of 1:10,000 and 1:2000 respectively. Antibodies to Actin (#A2228) were from Sigma-Aldrich and used at dilution 1:10,000.

Immunostaining

Rat monoclonal CD31 (PECAM-1), Clone SZ31 (DIA-310) antibodies were from Dianova and rabbit polyclonal Ki-67 antibodies from Abcam (ab15580). Paraffin sections were boiled in citrate buffer pH 6.0 for antigen unmasking. Primary antibodies were used at a dilution of 1:100. Alexa Fluor®546 conjugated goat anti-rabbit secondary antibodies (for CD31) and Alexa Fluor®647 conjugated chicken anti-rabbit secondary antibodies (for Ki-67) were from Life Technologies and used at a dilution of 1:400. Sections were counterstained with Hoechst 33342 (5 mg/ml) for nuclear detection. Images were obtained with a Leica SP8SMD laser scanning confocal microscope using a 40x oil immersion lens, λ 561 nm and λ 563 nm laser lines for excitation and emission between 570 and 620 nm, and 650 and 700 nm, respectively. There was no overlap with
endogenous p25-EGFP signal from the bitransgenic animal. The 633 nm channel was pseudo-colored in green, 561 nm channel in red and Hoechst in blue. For each conditions, N=3 fields from N=4 animals were imaged. Image analyses were conducted using Fiji17. Values reported are %CD31 staining and Ki67 positive cells /field of view.

Cell culture, proliferation and survival assays

Mouse and human MTC cell lines, i.e. MTCp25OE, MTC-SK, SIN-J and TT cells have been previously described [17, 42, 43]. Briefly, MTC-SK cells were derived from sporadic patient primary tumor [44], SIN-J cells from a sporadic MTC patient lymph node metastasis [42]. TT cells were from an hereditary MTC patient needle biopsy [43]. Cells were maintained and proliferation assays were conducted using the WST-1 cell proliferation reagent (Roche Diagnostics) [17]. For cell survival assays and dose-response curves, cells were seeded onto 96-well TC plates, treated with Vandetanib or Nintedanib for 6 days, fed with 10% FBS media on day 3, then incubated with CyQuant Cell Proliferation Assay (Invitrogen) reagents per manufacturer’s protocol and assayed using a BMG Optima Fluostar microplate reader. RFU from each well was normalized to control treated cells in order to determine percent effect on survival.

Statistical analysis

All quantitative data are expressed as means ± S.E.M. Two-tailed, unpaired Student’s t-test or one-way ANOVA followed by a Bonferroni’s post-test were used to compare the different groups as needed. Probability values of 0.05 or lower were considered to indicate significant differences between groups. The symbols used to indicate p-values were ‘p < 0.05, ”p < 0.01, ‘’p < 0.005, with subject number (n) stated in the legend.

Abbreviations

Medullary Thyroid Carcinoma (MTC), Neuroendocrine (NE), Tyrosine Kinase Inhibitor (TKI), Receptor Tyrosine Kinase (RTK), Magnetic Resonance Imaging (MRI), oral gavage (o.g.), intra-peritoneal (i.p.).

Author contributions

Conception and design: K. Pozo, S. Oltmann and J. A. Bibb

Writing: K. Pozo, A. M. Carter and J. A. Bibb
Administrative, technical, or material support: E. Gardener Grubbs, R. Pfagner, S. C. Oltmann
Study supervision: J. A. Bibb

ACKNOWLEDGMENTS

We acknowledge the help and guidance of Drs. Rolf Brekken, Shanrong Wang, Kim Kangasnami, Koji Sagiyama (UT Southwestern Medical Center, Dallas, TX).

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest with the contents of this article.

FUNDING

This research was supported by a North American Neuroendocrine Tumor Society Fellowship (K.P.), an American Cancer Society Young Investigator Award (A.M.C.), a Chinese Council Scholarship (S.W.), a Dedman Family Scholar Award (S.C. O.), an American Thyroid Association Research Grant (S.C.O) and an American Cancer Society MEN2 Thyroid Cancer Consortium research grant RSGM-11-190-01 (J.A.B.).

REFERENCES

The Emerging Role of Cdk5 in Cancer
Karine Pozo¹,²,* and James A. Bibb³,⁴,*

Cdk5 is an atypical cyclin-dependent kinase that is well characterized for its role in the central nervous system rather than in the cell cycle. However, Cdk5 has been recently implicated in the development and progression of a variety of cancers including breast, lung, colon, pancreatic, melanoma, thyroid, and brain tumors. This broad protumorigenic role makes Cdk5 a promising drug target for the development of new cancer therapies. In this review, we discuss the contribution of Cdk5 to molecular mechanisms that confer upon tumors the ability to grow, proliferate, and disseminate to secondary organs, as well as resistance to chemotherapies. We subsequently discuss existing and new strategies for targeting Cdk5 and its downstream mechanisms as anticancer treatments.

Cdk5: An Overlooked Player in the Cancer Field
Deregulation of the cell cycle is a fundamental process that underlies cancer proliferation [1]. Progression through the cell cycle is regulated by the coordinated actions of cyclin-dependent kinases (Cdks), which are, therefore, targets of interest for anticancer drugs. However, many cancers are currently not responsive to anti-Cdk therapies [2]. The protein kinase Cdk5 has long been overlooked in cancer-related studies because it is an atypical Cdk that is predominantly expressed in neurons and is mainly activated by the noncyclin activator p35 or its truncated product, p25 [3] (Box 1; Figure 1B, Key Figure). Nevertheless, Cdk5 is rapidly emerging as a new player in tumorigenesis with functions ranging from cell proliferation to metastatic invasion (Figure 1C) and angiogenesis. In this review, we present recent evidence demonstrating that Cdk5 plays a critical role in the molecular mechanisms driving tumor formation and development. We further examine new studies indicating a link between Cdk5 and radiotherapy/chemotherapy resistance as well as Cdk5 and immunotherapy. Finally, we discuss why Cdk5 may be a valid target for anticancer therapies.

Human Cancers Express Cdk5
Expanding evidence at the gene, mRNA, and protein levels supports a role for Cdk5 in human cancers (Table 1) and its expression and activity as biomarkers for the prediction of cancer severity. First, genetic variations such as the amplification of the Cdk5 gene [4] or p35/p39 genes [5,6] as well as single-nucleotide polymorphisms in the Cdk5 gene promoter region [7] occur in several cancer populations. These are, for example, associated with higher lung cancer risks in the Korean population [4,7] and with aggressive forms of prostate cancers in African Americans [8]. Second, mRNA and protein expression levels of Cdk5 and its activators are increased, or decreased, in several forms of cancer and these alterations are correlated with cancer severity (Figure 1A, Table 1). For example, Cdk5 and p35/p25 are elevated in pulmonary neuroendocrine cancers [9–11], in sporadic and familial forms of medullary thyroid carcinoma (MTC) [12], and in pituitary adenoma [13]. In fact, Cdk5 and p35/p25 expressions appear to typify neuroendocrine cancer pathology. In tissues from nonsmall cell lung cancer (NSCLC), breast, brain, and nasopharyngeal cancer patients, increased Cdk5 and/or activator expression parallels...
Box 1. Cdk5, an Unconventional Cyclin-Dependent Kinase (Cdk)

Although Cdk5 exhibits approximately 60% amino acid sequence identity with Cdk1 and Cdk2 [3], it is highly expressed in the brain compared with other organs, and is therefore considered as a neuronal kinase. Cdk5 has been well characterized for brain development, function, and pathologies [3], while its roles in non-neuronal tissues have been underexplored until recently [22,63].

Control of Cdk5 activity is unlike that of any other Cdk5s [3]. It is activated by binding to the noncyclin activators, p35 or p39, and phosphorylates substrates on serine or threonine residues within the consensus motif S/TPXH/K/R (Figure 1B,D). Cdk5 activation by cyclins D, E, and G1, and the non-cyclin protein p67 has also been reported but the significance in tumorigenesis has not been elucidated yet [64]. Cdk5 can also be activated by binding to cyclin I [65] and in cervical cancer patients, the Cdk5/cyclin I complex is associated with resistance to cisplatin treatment [66]. Since the predominant Cdk5 activators are p35 and p39, these are discussed further here. Cdk5/p35 and Cdk5/p39 are constitutively active forms of the kinase, with relatively low catalytic efficiency compared with more acutely activated kinases, and are distributed throughout cells. Cleavage of Cdk5 cofactors by calpain removes the first 100 amino acids, to produce p25 or p29, which still contain the Cdk5 binding domain. The resulting Cdk5/p25 or Cdk5/p29 holoenzymes have longer half-lives and altered substrate specificity compared with Cdk5/p35 or Cdk5/p39. Cdk5/p35 is often docked to cell membranes due to a myristoylation in the p35 N-terminal region. Loss of this domain as a result of cleavage renders Cdk5/p25 more soluble, able to access cytoplasmic and nuclear substrates that are not in cellular membranes proximity [67] (Figure 1). Cdk5/p25 and Cdk5/p35 have been linked to tumorigenesis, however, Cdk5/p25 seems to be a more toxic form linked to neurodegenerative diseases and paradoxically, pro-cell cycle [22]. Regulation of calpain-mediated p35-to-p25 cleavage in cancer cells has not been studied. It can be speculated that environmental stresses cause changes in calcium concentration that activates the calpain protease activity. p35 also undergoes post-translational modifications in addition to proteolytic cleavage, including autophosphorylation, which may impact regulatory mechanisms [67]. The cytoskeleton protein, nestin, regulates the turnover of p35 into p25 in myoblasts [68]. A similar mechanism might occur in cancer cells. Getting a better insight of the mechanisms underlying the p35-to-p25 cleavage may offer new targets for Cdk5-driven cancer treatments.

Table 1. Expression of Cdk5 in Human Cancers

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Cdk5 function</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>Proliferation, survival, epithelial-to-mesenchymal transition, and metastasis</td>
<td>[15,16]</td>
</tr>
<tr>
<td>Colorectal</td>
<td>Proliferation</td>
<td>[78]</td>
</tr>
<tr>
<td>Gastric</td>
<td>Cell-cycle suppressor</td>
<td>[20]</td>
</tr>
<tr>
<td>Glioma, glioblastoma</td>
<td>Invasion</td>
<td>[17,18]</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>Migration, angiogenesis, inflammation, and lymphatic development</td>
<td>[21,34]</td>
</tr>
<tr>
<td>Head and neck</td>
<td>Not known</td>
<td>[19]</td>
</tr>
<tr>
<td>Leukemia</td>
<td>Survival</td>
<td>[79]</td>
</tr>
<tr>
<td>Lung – small cell lung cancer, carcinoids</td>
<td>Proliferation and migration</td>
<td>[42]</td>
</tr>
<tr>
<td>Lung – nonsmall cell lung cancer</td>
<td>Proliferation, migration, and invasion</td>
<td>[4,14]</td>
</tr>
<tr>
<td>Mantle cell lymphoma</td>
<td>Proliferation</td>
<td>[80]</td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td>Immune evasion</td>
<td>[62]</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Proliferation and invasion</td>
<td>[45]</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>Not known</td>
<td>[81]</td>
</tr>
<tr>
<td>Ovary</td>
<td>Migration</td>
<td>[19]</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>Proliferation, migration, invasion, and metastasis</td>
<td>[6,44]</td>
</tr>
<tr>
<td>Pituitary adenoma</td>
<td>Migration and invasion</td>
<td>[13]</td>
</tr>
<tr>
<td>Prostate</td>
<td>Proliferation, migration, metastasis, and apoptosis</td>
<td>[43]</td>
</tr>
<tr>
<td>Thyroid – medullary thyroid carcinoma</td>
<td>Proliferation</td>
<td>[12]</td>
</tr>
</tbody>
</table>
advanced cancer stages, occurrence of lymph node metastasis, and overall poor 5-year survival, while low Cdk5 levels correlates with metastatic-free disease [14–19]. Somewhat remarkably abnormal low Cdk5 or activator tumor levels are also indicative of poor prognosis as in advanced gastric cancer [20] or hepatocellular carcinoma (HCC) [21]. However, more
studies are needed to understand the molecular mechanisms by which Cdk5 and activators contribute to these cancers. In the following section, we discuss what is currently known about Cdk5 role in oncogenic pathways.

Molecular Links between Cdk5 and the Cell Cycle

Historically, Cdk5 has not been considered as a potential cell-cycle regulator because it is predominantly expressed in nondividing, postmitotic neurons [3]. However, it has been noted that Cdk5 facilitates amyloid β protein-induced cell-cycle re-entry in neurons of mouse models of Alzheimer’s disease [22] and directly modulates the function of tumor suppressors and transcription factors (Figure 2A, Table 2). This raises the possibility that evolution of the central nervous system function occurred through adaption of cell-cycle mechanisms. Thus, Cdk5 may contribute to neurodegeneration and oncogenesis through overlapping or common pathways and especially those related to the cell cycle and cell proliferation (Figure 1C).

Cdk5 and the Retinoblastoma Protein/E2 Family of Transcription Factors Pathway

Cdk5 modulates the retinoblastoma protein (Rb)/E2 family of transcription factors (E2F) pathway by phosphorylating Rb [23], thereby promoting cancer cell proliferation as in MTC [12]. Rb controls the transition from the G0/G1 to S phase, and thus the initiation of the cell cycle by sequestering the transcription factor E2F [22] (Figure 2A). It is well accepted that upon Rb phosphorylation by Cdk4–6/cyclin D, E2F is released and activates the transcription of genes required for cell-cycle progression. In MTC, phosphorylation of Rb by Cdk5 results in E2F target genes expression, including Cdk2, p15INK4b, and p21CIP/WAF1 with cancer proliferation ensuing.

Table 2. Cdk5 Substrates Implicated in Cancer

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Site</th>
<th>Protein type/cellular function</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akt</td>
<td>Ser-473</td>
<td>Kinase/proliferation</td>
<td>[30]</td>
</tr>
<tr>
<td>AR</td>
<td>Ser-81, Ser-308</td>
<td>Transcription factor/proliferation</td>
<td>[82] [33]</td>
</tr>
<tr>
<td>Ape1</td>
<td>Thr-232</td>
<td>Endonuclease/DNA-damage response</td>
<td>[83]</td>
</tr>
<tr>
<td>ATM</td>
<td></td>
<td>Kinase/DNA-damage response</td>
<td>[37]</td>
</tr>
<tr>
<td>Caldesmon</td>
<td>Ser-527</td>
<td>Cytoskeletal protein/migration</td>
<td>[75]</td>
</tr>
<tr>
<td>DLC-1</td>
<td>Ser-120, Ser-205, Ser-422, and Ser-509</td>
<td>Tumor suppressor/proliferation</td>
<td>[84]</td>
</tr>
<tr>
<td>FAK</td>
<td>Ser-732</td>
<td>Cytoskeletal protein/migration/EMT</td>
<td>[15,85]</td>
</tr>
<tr>
<td>Girdin</td>
<td>Ser-1674</td>
<td>GTPase/Migration</td>
<td>[41]</td>
</tr>
<tr>
<td>Hu antigen R</td>
<td>Ser-202</td>
<td>mRNA binding protein/proliferation</td>
<td>[86]</td>
</tr>
<tr>
<td>Noxa</td>
<td>Ser-15</td>
<td>Proapoptotic factor/apoptosis</td>
<td>[79]</td>
</tr>
<tr>
<td>PAK1</td>
<td>Thr-212</td>
<td>Cytoskeletal protein/migration</td>
<td>[87]</td>
</tr>
<tr>
<td>p53</td>
<td>Ser-15, Ser-33, and Ser-46</td>
<td>Tumor suppressor/apoptosis</td>
<td>[88] [89]</td>
</tr>
<tr>
<td>PIKE-A</td>
<td>Ser-279</td>
<td>GTPase/migration, invasion</td>
<td>[90]</td>
</tr>
<tr>
<td>Rb</td>
<td>Ser-780, Ser-795, and Ser-807/811</td>
<td>Tumor suppressor/proliferation</td>
<td>[91] [23]</td>
</tr>
<tr>
<td>STAT3</td>
<td>Ser-727</td>
<td>Transcription factor/proliferation</td>
<td>[26]</td>
</tr>
<tr>
<td>Talin</td>
<td>Ser-425</td>
<td>Cytoskeletal protein/migration</td>
<td>[74]</td>
</tr>
<tr>
<td>VEGFR2</td>
<td>Ser-229</td>
<td>Tyrosine kinase receptor/invasion</td>
<td>[92]</td>
</tr>
</tbody>
</table>

AR, androgen receptor; ATM, ataxia-telangiectasia mutated; DLC-1, deleted in liver cancer 1; EMT, epithelial-to-mesenchymal transition; FAK, focal adhesion kinase; PAK1, p21-activated kinase 1; PIKE-A, PI 3-kinase enhancer A; STAT3, signal transducer and activator of transcription 3; VEGFR2, vascular endothelial growth factor receptor 2.
Figure 2. Cdk5-Driven Mechanisms in Cancer Progression. (A) Schematic representation of Cdk5 contribution to cell cycle and proliferation. Cdk5 phosphorylates tumor suppressors and transcription factors involved in cell-cycle progression. Cyclin I may bind and activate Cdk5 during the cell cycle. The phases at which Cdk5 regulates each transcription factor have not been clearly defined. (B) Proposed role for Cdk5 in the DNA-damage response and DNA-repair processes. Cdk5 becomes activated in tumor cells exposed to DNA-damaging agents (i.e., radiation and chemotherapy). EgR1 induces p35 expression, which binds and activates Cdk5. p35 can be cleaved to produce p25, which activates Cdk5, as in brain cancers. Upon activation, Cdk5 phosphorylates the checkpoint kinase ataxia-telangiectasia mutated (ATM) and the transcription factor signal transducer and activator of transcription 3 (STAT3) to transduce DNA-damage responses and facilitate DNA repair. (C) Cdk5 in cell motility and migration. Cdk5 becomes activated upon stimulation with transforming growth factor β (TGFβ) or epithelial growth factor (EGF) and phosphorylates components of the cytoskeleton and focal adhesions to induce cell motility and migration. Cdk5 may facilitate neoplasia and angiogenesis through hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) signaling. Induction of human Achaete-scute homolog 1 (hASH1) and subsequent expression of p35 may be a mechanism by which Cdk5 is activated as it occurs in lung cancer. The intermediate filament protein, nestin, is a Cdk5 substrate and might regulate the cleavage of p35-to-p25 by an autoregulatory process. (D) Role of Cdk5 in endothelial cell proliferation and migration. Cdk5 is expressed in endothelial cells, is activated by proangiogenic factors, and regulates angiogenesis by facilitating the migration of endothelial cells via a Rac-dependent mechanism. AR, androgen receptor; Cald, caldesmon; CRMP, collapsin response mediator protein-2; E2F, E2 family of transcription factors; EgR1, early growth response protein; Em1, DNA endonuclease; EMT, epithelial-to-mesenchymal transition; FA, focal adhesion; FAK, focal adhesion kinase; P, Cdk5-mediated phosphorylation; Rb, Retinoblastoma protein; Stath, stathmin; VEGF-A, vascular endothelial growth factor A; VEGFR1, vascular endothelial growth factor receptor 1.
All these events are prevented by Cdk5 inhibition, supporting a key role for Cdk5 activity in MTC via Rb dysregulation. These provocative findings also raise the intriguing possibility that Cdk5 is capable of replacing Cdk4/6 in certain cancer types, providing a molecular basis for why some cancers are resistant to Cdk4/6 inhibitors. Whether Cdk5 regulates the function of Rb-like proteins, p107 and p130, which are also E2F-binding tumor suppressors, in Rb-negative tumors remains to be determined. Moreover, it would be interesting to find out if Cdk5 can modulate cell-cycle progression by associating with E2F in a p35-dependent manner, thereby interfering its function as observed in neurons [22]. Finally, understanding the cell-cycle progression effects of Cdk5 phosphorylation of E2F targets genes, p19INK4d, and the Cdc25 family of dual-specific phosphatases, Cdc25A-C, on [24,25] would yield more insights into the role of Cdk5 in the cell cycle and tumorigenesis.

Cdk5 and Signal Transducer and Activator of Transcription 3

Besides Rb/E2F, Cdk5 has been associated with the dysregulation of signal transducer and activator of transcription 3 (STAT3) in cancer cells. This transcription factor integrates a variety of signaling pathways and controls the expression of cell-cycle genes such as cyclin D1 and c-Fos [26] (Figure 2A). In normal cells, STAT3 becomes activated following cell stimulation by a cytokine or growth factor, while in cancer cells STAT3 is often deregulated. Cdk5 interacts with and phosphorylates STAT3 at Ser-727, which is necessary for MTC and prostate cancer cells proliferation [27,28]. STAT3-target genes are indeed induced upon Cdk5 activation. Importantly, prostate cancer cells and prostate cancer patient tumors express Cdk5, p35, and phosphorylated Ser-727 STAT3 [28,29]. It would be interesting to define the determinants for Cdk5-dependent phosphorylation of Rb versus STAT3.

Cdk5 and the Androgen Receptor

In prostate cancer, Cdk5 can also phosphorylate the transcription factor androgen receptor (AR; Figure 2A). Cdk5 interacts with AR and phosphorylates it at Ser-308, thereby stabilizing the receptor and enabling transcription of AR-induced genes in early stage prostate cancer cells [30]. AR phosphorylation at Ser-81 by Cdk5 also promotes the growth of prostate cancer cells and prostate tumor xenografts [28]. AR may also be stabilized by interacting with a Cdk5-phosphorylated form of STAT3, that is, Ser-727 STAT3 in prostate cancer cells, thus providing a mechanism linking Cdk5–STAT3–AR in prostate cancer tumorigenesis [28]. Interestingly, AR gene expression in hormone therapy-resistant prostate cancers is driven by the Rb/E2F pathway upon Rb genetic inactivation. It would be interesting to determine if Cdk5 plays a role in the signaling mechanisms underlying advanced forms of prostate cancers by regulating AR or E2F function.

Overall, Cdk5 appears to modulate the function of cell-cycle proteins, including tumor suppressors and transcription factors, thereby regulating cancer cell proliferation. Interestingly, Cdk5 has previously been proposed as a cell-cycle suppressor in neurons [22]. Indeed, in gastric cancer cells, Cdk5 accumulation in the nucleus has an antitumor effect, while decrease in nuclear Cdk5 correlates with cancer progression [20]. We speculate that for some malignancies, Cdk5 may have a protective effect and act as a cell suppressor as found in neurons, while in others, dysregulated Cdk5 promotes tumorigenesis.

Cdk5 in DNA Repair and Drug Resistance

Increasing evidence indicates that Cdk5 contributes to the initiation of the DNA-damage response (DDR) and DNA repair. Upon exposure to environmental stressors such as UV, genotoxic agents, or radiation, these mechanisms are activated and ensure maintenance of genome integrity during cell division by preventing the transmission of damaged DNA. Deregulation of the DDR and DNA repair have been associated with tumorigenesis and resistance to conventional DNA-damaging agent-based cancer treatments, such as chemotherapies and radiation therapies [31]. As will be discussed in the following section, Cdk5’s role in the DDR and
DNA repair is leading to the exciting hypothesis that Cdk5 inhibition may be a valid strategy to bypass chemotherapy and radiation therapy resistance.

DNA-Damaging Agents Induce Cdk5

Cdk5 is activated in cancer cells or tissues exposed to conventional DNA-damaging therapies including ionizing radiations (IRs) or genotoxic agents, such as topoisomerase inhibitors and DNA crosslinkers \[16,32–35\] (Figure 2B). Upregulation of p35 expression, via the early growth response protein 1 (EgR1) promoter, and formation of p25 may underlie increases in Cdk5 activity in IR-exposed glioblastoma and genotoxic agent-treated neuroblastoma \[17,36,37\]. IR/genotoxic agent-induced Cdk5 activation likely contributes to DNA repair as DNA double-strand breaks are more abundant following pharmacological inhibition of Cdk5 or siRNA/short hairpin RNA-mediated knockout of Cdk5 in cancer cells exposed to DNA-damaging agents \[33–35\].

Cdk5 and the Regulation of the DDR and DNA Repair

Cdk5 is known to activate cell-cycle checkpoints, which is a prerequisite to DNA repair (Figures 1C and 2B). First, Cdk5 phosphorylates the checkpoint-activating kinase ataxia-telangiectasia mutated at Ser-794 to switch on its kinase activity \[34,35,37\] in some cancer cells. Consistent with these findings, Cdk5 activity blockade in HCC cell lines prevents ataxia-telangiectasia mutated phosphorylation and the initiation of the downstream DDR signaling cascade, while the formation of double-strand breaks is increased \[34\]. Second, Cdk5 phosphorylates and activates replication protein A-32, which is a necessary step for the induction of the intra-S-phase checkpoint and DNA repair \[16\]. Finally, Cdk5 transduces the signals necessary for the expression of DNA-repair molecules. For example, expression of the DNA-repair endonuclease Eme1 in genotoxic agent-treated colorectal cancer cell lines is dependent on the activation of STAT3 by Cdk5 \[33,38\]. It will be useful to determine if Cdk5s role in the initiation and transduction of the DDR is dependent on the cancer type, the type of DNA-damaging method, or the severity of the DNA damage, as this might influence potential treatment strategies.

Cdk5 and Clinical Implications of Resistance to DNA-Damaging Therapies

Cdk5 function in the DDR and DNA repair may be linked to resistance to DNA-damaging anticancer therapies. Cdk5 has indeed been implicated in resistance to poly(ADP-ribose) polymerase inhibitors \[16,32,34,39\], topoisomerase inhibitors, and DNA crosslinkers. In line with these observations, treatment of the NSCLC cell line A549, the proliferation of which is driven by Cdk5 \[11\], with the Cdk5 inhibitor roscovitine enhanced its sensitivity to IR \[40\]. In all cases, Cdk5 inhibition or Cdk5 knockdown restored chemotherapeutics sensitivity. Likewise, the antitumor response to the chemotherapeutic in a xenograft mouse model of HCC was improved when roscovitine was coadministered \[34\]. These observations all suggest that effective Cdk5 inhibitors could be administered in combination with DNA-damaging agents to improve conventional anticancer treatments.

Cdk5 and Cancer Dissemination

During tumorigenesis, malignant cells can acquire phenotypic features enabling them to leave the primary tumor and transit via the blood and lymphatic circulation to secondary sites, in which they will grow into macrometastases \[1\]. In addition to tumor proliferation, Cdk5 is involved in the signaling pathways that underlie cancer cell migration to metastatic sites. Cdk5 has been linked to different components of the cancer dissemination process (Figure 2C).

Cdk5 and ‘Migration-Proliferation Dichotomy’

Cdk5 contributes to the early events that decide whether tumor cells will continue growing or migrate toward secondary tumor sites for metastatic invasion \[41\]. When breast cancer cells are stimulated with epidermal growth factor, Cdk5 becomes activated and phosphorylates the Gox-interacting vesicle-associated protein Girdin, which in turn activates traditional downstream pathways.
G-coupled receptor-dependent signaling mechanisms that promote cell migration. Thus, Cdk5 activity may be key in determining whether cells maintain a strictly proliferative versus invasive agenda.

Cdk5 and Epithelial-to-Mesenchymal Transition

Acquisition of the invasive phenotype requires cancer cells to change their cell–cell adhesion properties and acquire a motility phenotype, a process called epithelial-to-mesenchymal transition (Figure 2C). In breast cancer, Cdk5 is essential for initiation of metastatic invasion upon stimulation with transforming growth factor β1 (TGFβ1) [15]. Depleting Cdk5 is sufficient to abolish TGFβ1-induced epithelial-to-mesenchymal transition. Interestingly, expression of Cdk5 and p35 in breast cancer cells is enhanced upon TGFβ1 stimulation. It will be useful to determine how TGFβ1 regulates the transcription of Cdk5 and p35.

Cdk5 and Cancer Cell Migration

Cdk5 activity drives the migration and metastatic invasion of some forms of lung [42], prostate [29,43], pancreas [6,44], melanoma [45], pituitary [13], and thyroid [27] cancers. The migration of these cancer cells in culture or in vivo is stopped upon Cdk5 inhibition (Figure 2C). Mechanistically, Cdk5 activity is dependent on p35 expression, which is controlled by the transcription factor human Achaete-scute homolog 1 in migrating neuroendocrine lung cancer cells [42].

In pancreatic cancer, Cdk5 is downstream of K-Ras [6,44]. In fact, K-Ras promotes the generation of p25 and activation of Cdk5, which subsequently turns on the Ral pathway and causes changes in cell morphology favoring cell migration. Pancreatic ductal adenocarcinoma cells exhibit shorter processes and become flat upon Cdk5 inhibition downstream of Ras [6]. In fact, Cdk5 activity is associated with the invasive cellular phenotype, including the remodeling of the actin cytoskeleton, the formation of invadopodia, and the regulation of focal adhesions, which are protein complexes involved in cell extracellular matrix adhesions and motility (Box 2). Whether Cdk5 involvement in cancer cell migration is dependent on cancer context or is common to all cancer types remains to be elucidated.

An Unexpected Role for Cdk5 in Tumor Angiogenesis

One of the least suspected functions for Cdk5 is its critical contribution to angiogenesis. This process by which blood vessels form from pre-existing ones to ensure the delivery of oxygen and nutrients to growing tumors allows removal of metabolic wastes and, together with lymphatic vessels, provide an escape route for cancer cells migration to metastatic sites. Evidence is rapidly
implicating Cdk5 as a master regulator of angiogenesis at least in some cancers [46]. In addition to tumor cells, Cdk5 is expressed in endothelial cells lining of blood vessels that are usually quiescent [47] and regulates their proliferative and migratory properties [48,49] (Figure 2C).

Cdk5 and Endothelial Cell Survival
Cdk5 is critical for endothelial cell proliferation and disruption of Cdk5 expression causes apoptosis. Cdk5 protein levels are elevated in proliferating cultured bovine aortic endothelial cells while Cdk5 expression is lower in quiescent cells [47]. Consistently, overexpression of Cdk5 (and Cdk2) triggers cell proliferation and angiogenesis, whereas Cdk5/2 inhibition with roscovitine arrests both processes and leads to apoptosis [47,50].

Cdk5 and Endothelial Cell Migration
Cdk5 also contributes to endothelial cell migration [48,49]. Cdk5 regulates lamellipodia formation, and thus endothelial cell migration by remodeling the actin cytoskeleton via regulation of the monomeric GTPase Rac1 [48,51]. In melanoma xenograft mouse models, Cdk5 inhibition prevents formation of functional blood vessels and consequently tumor growth [49].

Cdk5 and Angiogenic Molecules
Several lines of evidence suggest there is an intricate relationship between Cdk5 and angiogenic molecules. First, Cdk5 expression in endothelial cell is induced by proproliferative, angiogenic factors, including basic fibroblast growth factor, that are secreted by tumor cells [50], while angiogenesis inhibitors such as angioatin prevent Cdk5 expression and cause apoptosis [47]. Second, Cdk5 regulates the expression and activity of the transcription factor hypoxia-inducible factor 1α (HIF1α) in both HCC tumor and endothelial cells (Figure 2C,D). Thus, Cdk5 exerts direct control over expression of the HIF1α target gene, vascular endothelial growth factor (VEGF)-A, and VEGF receptor 1, which are essential for the formation of new blood vessels in tumors [46]. Interestingly, Cdk5 can also act at the tumor cell level, inducing secretion of proangiogenic molecules. It will be critical in the future to determine if a regulatory loop between tumor and endothelial cells exists to control angiogenesis and how Cdk5 fits into it.

Cdk5 As an Antiangiogenic Drug Target
The apparent role of Cdk5 in endothelial cell physiology and tumor angiogenesis suggests it as a target for antiangiogenic treatment. New anti-Cdk5 drugs are being developed for this purpose [51]. Furthermore, other potential downstream targets of Cdk5 with function in angiogenesis, such as HIF1α and Notch, are being identified [46,49]. With the recent discovery that Cdk5 is involved in the development of lymphatic vessels [52], it is becoming clear that Cdk5 plays a more important role than suspected in the tumor vasculature and in supporting tumor development and spread.

Current Strategies for Cdk5 Targeting
From pan-Cdk inhibitors to pathway-specific blocking peptides, the repertoire of Cdk5-targeting drugs is increasing [2,53] (Figure 1D–F). While currently available compounds and agents have limitations, there is now renewed interest in the therapeutic targeting of Cdk5 or its pathogenic effectors.

Small Molecules Inhibitors
Inhibition of kinase activity using pan-Cdk small molecules inhibitors is the most common strategy currently on hand to target Cdk5 in preclinical studies. For some of these drugs, clinical trials have been conducted with mixed results [2]. Roscovitine is widely used to inhibit Cdk5 in cell lines and mouse models. This purine analog competes for ATP binding to Cdk5, but also inhibits Cdk1, 2, 9, and 7 [54]. Roscovitine has no effects on Cdk4/6, rendering it useful to study Cdk5 effects on Rb and the cell cycle. Although roscovitine exhibits anticancer properties
preclinically, clinical trials have been inconclusive to date [2]. By contrast, dinaciclib, which has improved potency for Cdk5 and Cdk1, 2, and 9, exhibits antiproliferative effects on hematological cancers during clinical trials [2,53]. Thus, targeting Cdk5 along with Cdk1, 2, and 9 may be a valid anticancer strategy. Other small molecule inhibitors CP681301 [55], indolizine A [56], and N-(5-isopropylthiazol-2-yl)-3-phenylpropianamide (PJB) [45] exhibit increased selectivity for Cdk5 and Cdk2 over other Cdns and anticancer activity in cell lines [12,45], but in vivo preclinical studies remain to be conducted. Thus, more inhibitors are available to target Cdk5 more specifically.

A Peptide for the Disruption of Cdk5/Activator Binding
A peptide derived from p35/p25 that selectively blocks Cdk5/p25 interactions has been used to rescue the Cdk5/p25-induced pathological phenotypes [53] (Figure 1E). However, the anticancer effect of this peptide remains to be determined. A peptide that disrupts Cdk5/p35 binding would be a useful tool to target Cdk5 in tumor cells or animal models because both holoenzymes, Cdk5/p35 and Cdk5/p25, appear to be tumorigenic.

Small Interfering Peptides: Targeting Cdk5/Substrate Interactions
An alternative approach for preventing Cdk5-induced pathogenesis consists in using short peptides to selectively block Cdk5-dependent phosphorylation of aberrant substrate within a given pathogenic pathway (Figure 1E). These approximately 20-amino acid peptides, designed based on the Cdk5 phosphorylation site on the substrate, were successful in selectively preventing Cdk5 phosphorylation of Rb, N-methyl-D-aspartate receptor subunit, and phosphodiesterase 4 (PDE4) to impair molecular processes leading, respectively, to cancer progression, loss of cognition, or depression [12,57,58]. Using pathway-specific peptides has the advantage of limiting side effects due to mechanistic specificity, although size and stability issues are of concern. Rigorous preclinical studies will be necessary to confirm the possibility of using these peptides or peptidelike molecules as anticancer treatments.

Drug Combinations
Combining Cdk5 inhibitors with other drugs is appearing as an attractive strategy for improving existing therapies. Co-treatment of roscovitine and irinotecan arrests HCC growth in mouse models [34]. Combining Cdk5 inhibition with the antiviral agent tilorone selectively inhibited growth, proliferation, and invasive phenotype of prostate cancer cells [59], while using the Cdk5 inhibitor AC11MYR2 in combination with the chemotherapy agent paclitaxel may prevent resistance associated with the use of paclitaxel [60,61].

Concluding Remarks
Cdk5 appears to play a central role in tumorigenic pathways, and therefore may be a valid target for anticancer drugs. Yet, many challenges remain (see Outstanding Questions). In particular, current clinical trials with pan-Cdk inhibitors have not been entirely conclusive. Developing more potent Cdk5 inhibitors and targeting Cdk5 downstream pathways in addition to Cdk5 may be a more effective strategy to stop cancer progression and limit adverse events.

Generating animal models of different cancers will be crucial to pinpoint the neoplastic roles of Cdk5 and identify targets for the treatment of Cdk5-driven cancers as well as for preclinical testing new therapies. Conditional expression of p25 under the appropriate promoter appears as a valid strategy to develop clinically relevant Cdk5-driven cancers that recapitulate the human disease. In this new era of immunotherapy, using animals in which tumor grows in a physiological microenvironment and in the context of a functional immune system may be crucial to obtain results that can be reproducible in patients.

Identifying the population of patients who could benefit from Cdk5-based treatments may also improve the outcomes of clinical trials. Defining a panel of biomarkers that includes Cdk5,
activators, and phosphorylation sites on pro-neoplastic effectors would allow stratification of the patient population, facilitating more precise treatments.

Knowledge gained in the field of neuroscience over the past two to three decades has given cancer researchers hints on the oncogenic functions of Cdk5 and have led to potential translational applications that may benefit cancer patients. For example, the links between Cdk5 and resistance to conventional therapies, that is, DNA-damaging and microtubule-stabilizing agents, open new treatment opportunities. An important next challenge will be to determine in the clinic if combining Cdk5 inhibitors can improve tumor-resistant patient responses to conventional treatments, as observed in cell culture and preclinical models. Furthermore, the groundbreaking finding that Cdk5 regulates the expression of the immune checkpoint programmed cell death-ligand 1 (PD-L1) [62] may offer new applications for Cdk5-targeting drugs in the immunotherapy.

Recent efforts have focused on targeting Cdk4/6 [2] and have led to the development and Food and Drug Administration approval of potent inhibitors for the treatment of some breast cancers. However, resistance to these drugs is frequently observed. Based on the newly discovered role of Cdk5 in Rb regulation, the question is arising as whether Cdk5 acts as an alternate driver in Cdk4/6-resistant cancers, broadening the spectrum for treatment strategies while increasing the urgency for moving Cdk5-specific anticancer drugs into the clinical arsenal. In this upcoming era of personalized medicine, defining a set of biomarkers that differentiate Cdk5- from Cdk4/6-driven cancers will be crucial to match cancer patients with the appropriate treatment.

Acknowledgments
This work was supported by a North American Neuroendocrine Tumor Society fellowship (K.P.), U.S. National Institutes of Health Grants (MH79710, MH083711, DA016672, DA033485, and NS073855) and American Cancer Society MEN2 Thyroid Cancer Consortium Research Grant (RSGM-11-190-01) to J.A.B. We thank Erik Knudsen and Florian Plattner for helpful discussions and Kate Mackley for graphic art. We apologize to authors whose work was not cited due to space limitations. Some images are used under license from Shutterstock.com. Credits to S. Kaulitzki/S.K. Chavan/M. Vaculikova/J. Vitanovski/Shutterstock.

Supplemental Information
Supplemental information associated with this article can be found online at doi:10.1016/j.trecan.2016.09.001.

References

28. Hsu, F.N. et al. (2015) Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Smad7(G207) on STAT3 in prostate cancer cells. J. Biol. Chem. 283, 3649–3658

49. Merk, H. et al. (2016) Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-proliferative angiogenesis. Oncotarget 7, 6088–6104

63. Liebl, J. et al. (2011) Twice switched at birth: cell cycle-indepen-
dent roles of the “neuron-specific” cyclin-dependent kinase 5 (Cdk5) in non-neuronal cells. Cell Signal. 23, 1698–1707
64. Arii, A. (2012) Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem. Pharma-
col. 84, 985–993
65. Brinkkoetter, P.T. et al. (2009) Cdk5 promotes Cdk5 and regu-
lates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J. Clin. Invest. 119, 3089–3101
dent kinase 5 activity through the metabolism of p35 or p39 Cdk5 activator. Neurosignals 12, 221–229
70. Rouzier, R. et al. (2012) Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem. Pharma-
col. 84, 985–993
73. Nie, W. et al. (2010) The role of Cdk5-mediated aurantic/aur-
col. 84, 985–993
75. Lowman, X.H. et al. (2011) Twice switched at birth: cell cycle-indepen-
dent roles of the “neuron-specific” cyclin-dependent kinase 5 (Cdk5) in non-neuronal cells. Cell Signal. 23, 1698–1707
82. Hsu, F.N. et al. (2011) Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J. Biol. Chem. 286, 33141–33149
Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis

Karine Pozo¹, Antje Hillmann¹, Alexander Augustyn²,³, Florian Plattner¹, Tao Hai⁴, Tanvir Singh¹, Saleh Ramezani⁵, Xiankai Sun⁵, Roswitha Pfragner⁶, John D. Minna²,³,⁷, Gilbert J. Cote⁴, Herbert Chen⁸, James A. Bibb¹,⁵,⁹,* and Fiemu E. Nwariaku¹⁰,*

¹ Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
² Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
³ Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
⁴ Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
⁵ Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
⁶ Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
⁷ Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
⁸ Endocrine Surgery Research Laboratory, The University of Wisconsin Carbone Cancer Center, Madison, WI, USA
⁹ Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
¹⁰ Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA

* These authors have contributed equally to this work

Correspondence to: James A. Bibb, email: james.bibb@utsouthwestern.edu
Correspondence to: Karine Pozo, email: karine.pozo@utsouthwestern.edu

Keywords: Cdk5, retinoblastoma protein, neuroendocrine, medullary thyroid carcinoma, cell cycle

Received: August 26, 2014 Accepted: March 03, 2015 Published: April 14, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer of thyroid C-cells, for which few treatment options are available. We have recently reported a role for cyclin-dependent kinase 5 (CDK5) in MTC pathogenesis. We have generated a mouse model, in which MTC proliferation is induced upon conditional overexpression of the CDK5 activator, p25, in C-cells, and arrested by interrupting p25 overexpression. Here, we identify genes and proteins that are differentially expressed in proliferating versus arrested benign mouse MTC. We find that downstream target genes of the tumor suppressor, retinoblastoma protein, including genes encoding cell cycle regulators such as CDKs, cyclins and CDK inhibitors, are significantly upregulated in malignant mouse tumors in a CDK5-dependent manner. Reducing CDK5 activity in human MTC cells down-regulated these cell cycle regulators suggesting that CDK5 activity is critical for cell cycle progression and MTC proliferation. Finally, the same set of cell cycle proteins was consistently overexpressed in human sporadic MTC but not in hereditary MTC. Together these findings suggest that aberrant CDK5 activity precedes cell cycle initiation and thus may function as a tumor-promoting factor facilitating cell cycle protein expression in MTC. Targeting aberrant CDK5 or its downstream effectors may be a strategy to halt MTC tumorigenesis.

INTRODUCTION

Neuroendocrine tumors (NETs) are rare cancers originating from hormone-secreting neuroendocrine (NE) cells. These slow-growing neoplasms affect both genders equally and their incidence is rising [1, 2]. NETs are often
diagnosed at late metastatic stages due to the absence of specific symptoms and are therefore often fatal. MTC arises from the thyroid parafollicular cells (C-cells), which secrete calcitonin. Most MTC cases (75%) are sporadic and about 40% are caused by somatic mutations in the RET proto-oncogene, 15% by mutation in the RAS gene, 10% by mutations in other genes and 35% by unknown causes [3-5]. Overall the etiology of sporadic MTC is poorly understood. Hereditary forms of MTC represent about 25% of cases and result from germline mutation in the RET proto-oncogene [6]. These genetic forms of MTC are often associated with other types of NE cancers and they are referred to as Multiple Endocrine Neoplasia of Type 2 (MEN 2). Surgical resection of the thyroid is the best treatment currently available for early stage disease but recurrence is common, particularly in sporadic MTC. The prognosis for advanced forms of MTC is poor with a five-year survival rate of 30%. FDA-approved drugs include the tyrosine kinase inhibitors, Vandetanib [7] and Cabozantinib [8], however their efficacy is limited [8, 9]. Therefore a better understanding of the drivers of MTC progression, especially in the absence of RET or RAS mutations, is needed to develop more effective treatment strategies. Toward this goal, it is paramount to elucidate additional molecular mechanisms underlying MTC and identify new targets for therapy development.

We recently reported that cyclin-dependent kinase 5 (CDK5) was involved in MTC pathogenesis [10, 11]. CDK5 is a serine/threonine kinase that is highly expressed in the brain and regulates neuronal function [12] but its role in cell cycle and cancer has not been well explored. CDK5 is activated by interaction with its cofactor, p35 [13], which can be cleaved by the calcium-dependent protein kinase, calpain, to produce p25. The resulting p25-CDK5 complex engenders aberrant activity with a different range of substrates. CDK5, p35 and p25 are expressed in other tissues besides brain and have been implicated in various forms of neoplasms, including thyroid [10, 11], pancreatic [14, 15], pituitary [16], breast [17], prostate [18, 19], and lung [20] cancers. In particular, CDK5 contributes to MTC by inactivating the tumor suppressor retinoblastoma protein (Rb), which is a ‘gatekeeper’ of the cell cycle [10], thereby suggesting a crucial role for CDK5 in the regulation of the cell cycle.

We have generated a novel conditional MTC mouse model in which overexpression of p25 (p25OE) in mouse thyroid C-cells invokes aberrant CDK5 activity and MTC tumorigenesis [10, 21]. Importantly, in these mice, arrest of p25OE completely halts MTC growth, thereby transforming tumors from a malignant to benign state. Mice harboring arrested tumors exhibit normal survival rates, whereas mice with proliferating MTC die within 30 weeks of transgene induction. A comparison of genes and proteins that are differentially expressed between malignant and benign tumors can help unravel the molecular basis for MTC tumorigenesis. Therefore in this study we investigate further the role of CDK5 in MTC pathogenesis by using an integrated approach including the novel MTC mouse model, human MTC cell lines and patient samples.

RESULTS

Differential gene expression analysis of tumors from an inducible medullary thyroid carcinoma mouse model

We have previously described a novel mouse model for MTC in which tumor progression and arrest are induced by overexpressing, and interrupting, green fluorescent protein-tagged p25 (p25-GFP) in thyroid C-cells [10]. Proliferating tumors display abnormally elevated CDK5 activity and are malignant. In contrast, arrested tumors are benign and exhibit much lower levels of CDK5 activity. Consistent with elevated cell proliferation, PET/CT imaging revealed 2.7-fold elevation in metabolic activity for proliferating malignant thyroid tumors compared to arrested benign tumors (Figure 1A). To gain more understanding of the molecular mechanisms underlying p25-CDK5-induced MTC proliferation, we conducted a microarray study of the differential mRNA expression in malignant versus benign tumors. Unsupervised clustering analyses identified 116 genes that were up-regulated, while 7 genes were down-regulated in malignant MTC compared to benign tumors (Figure 1B, Tables S1 and S2). Gene ontology analyses revealed a significant up-regulation of genes involved in cell cycle, cellular assembly and organization, DNA replication, DNA recombination, DNA repair, cellular movement, cellular death and cell survival (Figure 1C).

We previously showed that p25-CDK5-induced tumorigenesis was associated with elevated Rb phosphorylation, which inactivates Rb and leads to increased transcription of E2F target genes [10]. Consistent with these observations, differential gene analysis showed that the expression of E2F target genes such as those encoding Aurora kinase 1, Polo-like kinase 1, Survivin (BIRC5) and the cell cycle regulators CDK1, cyclin-A1 and cyclin-E2 were 3- to 4-fold up-regulated in malignant tumors (Figures 1D - 1E, Table S1). To validate the results of the differential gene expression analyses, eGFP was used as an internal control, as eGFP mRNA levels increase in proliferating tumors due to tetOp-1TA-mediated p25-GFP transgene overexpression. Consistent with its targeted regulation, the eGFP gene exhibited the highest differential expression level (log2 = 6.88, Table S1). Reverse transcription real time PCR (RT-qPCR) analysis confirmed this increased eGFP mRNA expression (Figure S1A).
Figure 1: Differential gene expression analysis of the conditional MTC mouse tumors. A) PET/CT scans show increased thyroid metabolism in mice with proliferating malignant tumors (P) compared to mice with arrested benign tumors (A) (N = 3 for each condition, p = 0.0139, Student’s t-test), arrows show the thyroid area. B, C and D) Expression array analyses. B) Heat map and volcano plot representations of differentially regulated mRNA in proliferating malignant versus arrested benign mouse tumors. Heat map shows segregation of arrested and proliferating tumors using unsupervised clustering analysis of gene expression data. Green color indicates down-regulated genes and red color, up-regulated genes. The X-axis on volcano plot represents expression of all genes in the microarray, with cutoffs displayed at +/−log2 = 2.00. The Y-axis plots a t-test transform, representing the significance of the gene expression difference for each gene. The line represents the boundary for p-values above −log10 = 3.00. Red points represent genes of interest, which exceeded both indicated cutoffs. C) Pathway analysis of up-regulated genes in proliferating tumors. The X-axis represents the p-value associated with each gene category identified from Ingenuity Pathway Analysis (IPA). The higher the value, the less likely that the gene group appears in the proliferating tumors by chance. The red line represents a standard cutoff value of p = 0.01. D) IPA analysis showing the relationship between retinoblastoma protein (RB1) and up-regulated downstream molecules that were identified in the gene expression array analysis. Yellow color indicates moderate levels of expression and red color indicates high levels of expression. Relations between Rb and downstream molecules are as follows: orange lines indicate molecules that are inhibited when Rb is in an active, hypophosphorylated state; grey lines indicate that the effect of Rb on the molecule is not predicted. E) Examples of cell cycle regulators with quantitation from proliferating vs. arrested tumors. Data are represented as mean +/− SEM.
Gene expression analysis of cell cycle regulators in malignant and benign mouse MTC

While CDK5 is well characterized for its role in the central nervous system, less is known about its role in the cell cycle. We and others have found that CDK5 could regulate the activation state of the tumor suppressor Rb, thereby implicating CDK5 in the regulation of cell cycle progression [10, 22, 23]. Here, the gene expression analysis revealed a significant up-regulation of genes encoding cell cycle proteins, including CDKs, cyclins and endogenous cyclin-dependent kinase inhibitors (CKI), in malignant mouse MTC, suggesting that p25-CDK5-dependent MTC tumorigenesis is associated with alterations in cell cycle regulation.

To validate the expression array data and investigate further the role of CDK5 in the cell cycle, we measured the relative expression of genes encoding CDK, cyclins and CKI by RT-qPCR analyses. Elevated Cdk1, Cdk2 and Cdk4 mRNA levels were detected in proliferating malignant tumors. Cdk5 mRNA levels remained unchanged despite p25 overexpression. Somewhat unexpectedly, Cdk6 mRNA expression was increased in arrested benign tumors (Figure 2A). Similarly, cyclin-D1 and p35 gene products, Ccnd1 and Cdk5r1, were up-regulated in benign tumors (Figure 2B). In contrast, the genes encoding cyclin-A1, -B1, -E1 and -E2, i.e. Ccna1, Ccnb1, Ccne1 and Ccne2, were up-regulated in malignant tumors. Finally, CKI gene expression analysis revealed elevated mRNA expression in malignant tumors for p16\(^{INK4a}\), p18\(^{INK4c}\), p19\(^{INK4d}\) and p21\(^{CIP/WAF1}\) encoding genes, i.e. Cdkn2a, Cdkn2c, Cdkn2d and Cdkn1a, while p15\(^{INK4b}\) and p27\(^{KIP1}\) encoding genes, i.e. Cdkn2b and Cdkn1b mRNA levels were unchanged between conditions (Figure 2C). Thus there is an overall elevation in the expression of several mRNAs encoding CDK, cyclins and CKI in proliferating malignant tumors compared to arrested benign MTC, thereby suggesting a role for CDK5 activity in the cell cycle.

Table 1: A Table summarizing cell cycle protein expression in mouse MTC tumors, human MTC-SK cells and human MTC tissues. To determine the role of CDK5 activity in the expression of cell cycle regulators, we assessed the changes in protein level of cyclins, CDKs, and CKI in mouse tumors and in MTC-SK cells following blockade of CDK5 activity. We have indeed previously demonstrated that CDK5 activity is reduced in arrested tumors by stopping p25-GFP transgene expression and in MTC-SK cells by overexpressing a kinase-dead CDK5 construct [10]. The changes in expression of cell cycle regulators in human MTC tumors compared to normal thyroid tissues are also reported.

<table>
<thead>
<tr>
<th>Mouse model</th>
<th>Human cell line</th>
<th>Patient tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrested proliferating MTC</td>
<td>Kd-Cdk5-transfected vs control cells</td>
<td>Sporadic control thyroid</td>
</tr>
<tr>
<td>Cdk2</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Cdk4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cdk6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cyclin A1</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>cyclin B1</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>cyclin D1</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>cyclin E2</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>p15(^{INK4b})</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>p16(^{INK4a})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p18(^{INK4c})</td>
<td>↓</td>
<td>-</td>
</tr>
<tr>
<td>p19(^{INK4d})</td>
<td>↓</td>
<td>-</td>
</tr>
<tr>
<td>p21(^{CIP/WAF1})</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>p27(^{KIP1})</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

www.impactjournals.com/oncotarget
Protein expression analysis of cell cycle regulators in malignant and benign mouse MTC

To further confirm the effects of p25-CDK5 up-regulation on expression of cell cycle regulators, we evaluated protein expression levels in proliferating malignant versus arrested benign mouse MTC (Figure 3). Quantification of immunoblots revealed CDK2 protein levels were elevated in proliferating tumors as previously observed [10]. However, CDK4 expression was unchanged between conditions (Figure 3A). CDK6 levels were more variable from sample to sample and thus no significant change in CDK6 was detected between malignant and benign MTC (Figure 3A). Consistent with mRNA findings, protein levels of cyclin-A1 [10], cyclin-B1 and cyclin-E2 were all up-regulated in malignant MTC (Figure 3B). Cyclin-D1 protein expression was also variable from sample to sample and overall its expression was not significantly altered (Figure 3B). As observed at the mRNA levels, CKI protein expression was predominantly up-regulated in malignant mouse tumors. In particular, the expression of p15INK4B, p18INK4C, p19INK4D and p21CIP/WAF1 was elevated in proliferating tumors compared to those in...
the arrested state (Figure 3C). In contrast, the expression of p16INK4a and p27KIP1 was not significantly changed between conditions. Overall, these results are consistent with the observations from the differential gene expression analysis.

Evaluation of the relationship between CDK5 activity and cell cycle protein expression levels

The gene and cell cycle protein expression analyses described above indicate a possible relationship between CDK5 activity and the regulation of cell cycle protein expression in proliferating versus arrested mouse MTC tumors. To directly assess the effect of CDK5 activity on the expression of cell cycle regulators in human MTC, we compared cell cycle protein expression in a human sporadic, non-RET mutated MTC cell line, MTC-SK [24], which was transfected with either a construct encoding kinase-dead CDK5 (Kd-CDK5) or with a control plasmid. We previously demonstrated that overexpressing kinase-dead CDK5 in MTC-SK cells abrogates CDK5 activity and stops cell proliferation [10].

As a prerequisite observation, most of the CDKs, cyclins and CKI that were detected in the mouse tumors were also expressed in MTC-SK cells transfected with a control plasmid (Figure 4). The only exception was cyclin-D1 which was not detected in MTC-SK cells and was unaffected by CDK5 activity in growing versus arrested mouse tumors. Interestingly, the expression of CDK2, CDK4 and CDK6 was diminished following Kd-CDK5 overexpression (Figure 4A). Moreover, the protein levels of cyclin-A1, cyclin-B1 and cyclin-E2 were all reduced in Kd-CDK5-transfected cells (Figure 4B). Finally, the expression of p15INK4b, p19INK4d and p21CIP/WAF1 was decreased in transfected MTC-SK cells, whereas the protein levels of p16INK4a, p18INK4c and p27KIP1 were not significantly changed (Figure 4C). These observations are consistent with the analysis of cell cycle protein

Figure 3: Evaluation of the effects of p25-GFP overexpression on cell cycle protein expression in malignant versus benign mouse MTC. Immunoblots of lysates from proliferating malignant (P) and arrested benign (A) mouse MTC for A) CDK2, CDK4 and CDK6; B) cyclins A1, B1, D1, D2 and C) p15INK4b, p16INK4a, p18INK4c, p19INK4d, p21CIP/WAF1 and p27KIP. P-values are p < 0.0001 for CDK2, p = 0.6974 for CDK4, p = 0.0633 for CDK6; p < 0.0001 for cyclin-A1, p = 0.0194 for cyclin-B1, p = 0.3416 for cyclin-D1, p < 0.0001 for cyclin-E2, p = 0.0002 for p15INK4b, p = 0.0194 for p16INK4a, p = 0.0066 for p18INK4c, p = 0.0054 for p19INK4d, p = 0.02 for p21CIP/WAF and p = 0.67 for p27KIP. Data are represented as mean +/- SEM, N = 6 for each condition.
expression in the mouse MTC. Together these results suggest that CDK5 activity regulates the expression of CDK2, cyclin-A1, cyclin-B1, cyclin-E2, p15INK4b, p19INK4d and p21CIP/WAF1 but not p16INK4a and p27KIP1 (Table 1). It is not clear whether CDK5 modulates the expression of CDK4, CDK6 and p18INK4c. Overall, these findings are in agreement with CDK5 regulating the expression of Rb-E2F target genes.

Analysis of cell cycle protein expression in human MTC tissue

While hereditary MTC is mainly caused by RET proto-oncogene mutations and consequent deregulation of the RET signaling pathway, the molecular basis for sporadic MTC is not well understood. Some sporadic MTC cases harbor mutations in the RET or Ras genes, but others do not. We previously reported that CDK5 was involved in MTC tumorigenesis, and found that high levels of CDK5 and its activators, p35 and p25, occur predominantly in the sporadic compared to the hereditary form of the disease [10]. Having established that CDK5 activity correlates with elevated cell cycle protein expression levels in proliferating mouse MTC and in a human sporadic MTC cell line, we compared protein levels of CDKs, cyclins and CKI in sporadic and hereditary MTC patient tissues (Figure 5). Sporadic specimen did not exhibit RET mutations (see method section). We found that CDK2 levels were elevated in sporadic cases, but decreased in hereditary forms of MTC. In contrast,

![Figure 4: Evaluation of the effect of CDK5 activity on cell cycle protein expression in human MTC cells. Immunoblots of lysates from MTC-SK cells transfected with either a control plasmid (Con) or a kinase-dead (Kd) CDK5 encoding plasmid for A) CDK2, CDK4 and CDK6; B) cyclin-A1, B1, -E2 and C) p15INK4b, p16INK4a, p18INK4c, p19INK4d, p21CIP/WAF and p27KIP. P-values are p = 0.0244 for CDK2, p = 0.038 for CDK4, p = 0.009 for CDK6; p < 0.0001 for cyclin-A1, p = 0.0005 for cyclin-B1, p = 0.0116 for cyclin-E2; p = 0.0044 for p15INK4b, p = 0.4687 for p16INK4a, p = 0.1032 for p18INK4c, p = 0.0195 for p19INK4d, p = 0.0022 for p21CIP/WAF and p = 0.2674 for p27KIP. Data are represented as mean +/- SEM, N = 4-6 for each condition.]
Figure 5: Analysis of cell cycle protein expression in human MTC samples. Representative immunoblots of lysates from control thyroid tissue (Co), sporadic (Sp) and hereditary (H) human MTC tumors with antibodies as indicated are shown with quantification. Protein levels were normalized to Coomassie blue (CB) signal. Immunoblots were probed with antibodies to A) CDK2, CDK4 and CDK6; B) cyclins-A1, -D1, -E2; C) in p15INK4b, p16INK4a, p18INK4c, p19INK4d, p21CIP/WAF and p27KIP. P-values were for CDK2, Sp, p = 0.0168 and H, p = 0.0140; for CDK4, Sp, p = 0.4072 and H, p = 0.8576; for CDK6, Sp, p = 0.5484 and H, p = 0.4916; for cyclin-A1, Sp, p = 0.9923 and H, p = 0.7017; for cyclin-D1, Sp, p = 0.0307 and H, p = 0.6883; for cyclin-E2, Sp, p = 0.2645 and H, p = 0.3070; for p15INK4b, Sp, p = 0.0088 and H, p = 0.0310; for p16INK4a, Sp, p = 0.0014 and H, p = 0.0496; for p18INK4c, Sp, p = 0.0309 and H, p = 0.1054; for p19INK4d, Sp, p = 0.0484 and H, p = 0.3560; for p21CIP/WAF, Sp, p = 0.0554 and H, p = 0.6807; for p27KIP, Sp, p = 0.2149 and H, p = 0.2131. Data are represented as mean +/- SEM, N = 4 for each condition.
CDK4 and CDK6 showed no significant changes in any of the groups analyzed (Figure 5A). Cyclin-D1 levels were increased in sporadic MTC, while cyclin-A1 and cyclin-E2 were unchanged in MTC compared to control thyroid samples (Figure 5B). Cyclin-B1 could not be detected in control thyroid or MTC specimens. The levels of p18\(^{INK4c}\), p19\(^{INK4d}\) and p21\(^{CIP/WAF1}\) were elevated in sporadic but not hereditary MTC. Finally p27\(^{KIP1}\) expression was unchanged in MTC samples compared to control samples. Proliferating Cell Nuclear Antigen was expressed at the same level in sporadic and hereditary tumors, thereby confirming that the observed changes were not just a measure of growth fraction (Figure S1B). The changes in cell cycle regulator expression that were observed in sporadic MTC tissues are consistent with those observed in the human MTC cell line and in mouse tumors (Table 1). The results suggest that the MTC mouse model may more accurately model the molecular mechanisms underlying sporadic MTC than hereditary forms. Thus CDK5 may play a more important role in sporadic than familial MTC tumorigenesis.

To characterize further CDK5 activity in human tumors, we compared the phosphorylation state of the known CDK5 substrates, inhibitor-1 (Ser-6) [25], Tau (Thr205) [26] and STAT-3 (Ser727) [27] between sporadic and hereditary tumors (Figure 6). We found these substrates were phosphorylated at their respective CDK5 sites, equally in both forms of MTC. Thus CDK5 activity is not uniformly elevated in response to p25 overexpression, and as p35 expression remains normal in both forms of MTC [10], the phosphorylation state of physiological CDK5 substrates may be unaffected.

Together the analysis of human tumors, cell line and mouse MTC suggests that up-regulation of cell cycle protein expression via a CDK5-mediated mechanism may contribute to sporadic MTC pathogenesis. The role of CDK5 in hereditary MTC tumorigenesis such as those arising from familial mutations in RET is less clear. These findings also suggest that cell cycle proteins may serve as useful biomarkers for sporadic forms of neuroendocrine thyroid cancer.

DISCUSSION

MTC is a devastating disease for which new treatments are urgently needed. Having generated a novel, inducible animal model for MTC, we set to elucidate the molecular mechanisms underlying this cancer. Array-based transcriptome analysis comparing proliferating malignant and arrested benign mouse MTC revealed deregulation of cell cycle regulator expression (Figure 1). A focused examination uncovered a CDK5-dependent increase in expression of genes encoding cell cycle regulators, including CDK2, cyclin-D1, p15\(^{INK4b}\), p16\(^{INK4a}\), p18\(^{INK4c}\), p19\(^{INK4d}\) and p21\(^{CIP/WAF1}\). RT-qPCR and protein expression analyses confirmed their up-regulation at mRNA and protein level in p25-overexpressing malignant mouse MTC. Furthermore, the same set of cell cycle proteins are down-regulated in human MTC cells lacking CDK5 activity, suggesting aberrant CDK5 activity is necessary and sufficient to drive expression of these markers. Importantly, there was no difference in levels of CDK5 itself, thereby underlining that it is the aberrant activity of the kinase that is critical to these malignancy-associated effects rather than its expression.
level. Analysis of human MTC tissues from sporadic and hereditary cases showed that the cell cycle proteins, CDK2, cyclin-D1, p18INK4c, p19INK4d and p21CIP/WAF1 were consistently overexpressed in human sporadic, but not hereditary, forms of MTC (Table 1). Although we could not demonstrate that CDK5 activity is higher in sporadic than in hereditary tumors, the integrated analysis of mouse tumors, the human cell line and patient samples suggest that CDK5 activity may be responsible for the increase in cell cycle protein expression that is detected in sporadic, non-RET MTC tissues. Our observations do not allow excluding a role for CDK5 in RET-dependent hereditary MTC. Cd5 and its activators are indeed expressed in some hereditary tumors [10] and CDK5 has also been suggested to contribute to the proliferation of TT cells, which are derived from a hereditary form of MTC (RET mutation on codon 634) [28]. It will be important in the future to determine whether CDK5 is involved in RET-mediated MTC pathogenesis and how.

Here we find that all the members of the INK4 family of CKIs, which are four ankyrin-repeat domains proteins inhibiting only cyclin-D-CDK4/6 function [29], are up-regulated in MTC patients. In particular p15INK4b and p16INK4a expression is increased in non-RET sporadic and RET-mutated, hereditary MTCs while p18INK4c and p19INK4d levels are elevated in non-RET sporadic MTC only. Interestingly p18INK4c and p19INK4d have potential CDK5 phosphorylation sites whereas p15INK4b and p16INK4a do not [30], thereby supporting our hypothesis that CDK5 may be more important for sporadic than hereditary MTC. The INK4 family members have previously been related to MTC. Base pair change mutations in exon 2 of the p15INK4b-encoding gene were found in some MTC cases [31]. Somatic mutations in exon 3 of the p18INK4c-encoding gene disrupting p18INK4c interaction with CDK4 or CDK6 were also detected in MTC and pheochromocytoma patients [32]. In addition, mutations in other exons of the p18INK4c-encoding gene or within p19INK4d-encoding gene have been reported in MTC patients [33]. Mutant mice carrying deletions of p18INK4c-encoding gene as well as the p27KIP1-encoding gene develop multiple endocrine tumors including MTC and pheochromocytoma [34, 35]. Finally, deletion of the p18INK4c-encoding gene and/or the p27KIP1-encoding gene amplifies the tumorigenic effect of RET mutations causing hereditary forms of MTC as studied in mouse models and cell culture [35, 36]. Together with our findings, these observations lead us to propose that inactivation or loss of p18INK4c and p19INK4d might be a feature of RET-dependent hereditary MTC, while overexpression of these proteins might characterize non-RET sporadic MTC. Analysis of large cohorts of RET and non-RET MTC specimen will be necessary to validate this hypothesis.

In this study, we present compelling evidence that CDK5 functions in the regulatory mechanisms that govern cell cycle progression and contribute to MTC tumorigenesis. The fact that a given set of cell cycle proteins display the same expression profile in three different MTC models, namely mouse model tissues, human sporadic MTC cell lines, and MTC patient samples, serves to underscore the relevance of our observations to mechanisms underlying this disease.

The cell cycle is initiated after the restriction point, or step of no-return, at which cells irreversibly commit to DNA replication. Bypassing the restriction point requires phosphorylation of Rb by CDKs, namely cyclin-D1-CDK4/6. Thereafter, cell cycle progression is reliant on coordinated action of cyclin-CDK complexes at defined phases throughout the cell cycle. Based on our current and previous studies, we propose that the aberrant activity of CDK5 may facilitate bypass of the restriction point through initial deactivation of Rb, via phosphorylation, which in turn promotes E2F target gene expression. In support of this notion, we show here that E2F target genes, including CDK2, p15INK4b, p19INK4d and p21CIP/WAF1 [37, 38] are up-regulated in p25-overexpressing malignant mouse MTCs, while the expression of these proteins is reduced following inhibition of CDK5 activity.

In summary, this study suggests that aberrant CDK5 activity promotes sporadic forms of MTC by modulating the expression of cell cycle proteins and points to these as possible biomarkers or targets for the development of new therapies.

MATERIALS AND METHODS

Human samples

Medullary thyroid cancer specimens and control thyroid samples (goiters) were obtained through a human subject institutional-review-board-approved protocol UT Southwestern IRB 052004-044, “Molecular Analysis of Endocrine Tumors”.

Sequencing of human MTC tumors and of the MTC-SK cell line

MTC tumors and MTC-SK cells were examined for ‘hot spot’ somatic RET mutations (exons 10, 11, 13, 14, 15 and 16) by direct sequencing of DNA extracted from tumor specimens using a QIAamp DNA FFPE Tissue Kit (QIAGen) or extracted from cultured MTC-SK cells using DNAeasy Blood and Tissue Kit (QIAGen) according to the manufacturer’s instructions. Sequencing was performed as previously described with some modification of primer sequences and conditions [39]. See supplemental methods for detailed information regarding primer sequences and reaction conditions. Sporadic MTC tumors (n = 4) had no mutations in RET exons. Hereditary MTC samples exhibited either a RET C634R mutation (n = 2) or a RET...
C618S mutation (n = 1), or RET L790F (n = 1). Because of the low number of available samples, tumors were classified as either sporadic (non-RET) or hereditary (RET-mutated). No RET mutations were detected in MTC-SK cells.

Animals

The NSE/p25-GFP line is a bitransgenic mouse model of MTC based on a tetracycline transactivator system and has been described in detail [10, 21]. Briefly the neuron specific enolase (NSE) promotor controls expression of a tetracycline transactivator that is inhibited by dietary doxycycline (i.e., Dox off). Thus removing doxycycline (100 mg/L) from drinking water induces p25-GFP expression and MTC development. Subsequent re-addition of doxycycline stops p25-GFP overexpression and arrests tumor growth.

Tumor collection and lysate preparation

Proliferating tumors were obtained by inducing p25-GFP expression in NSE/p25-GFP mice for 16 weeks. For arrested tumors, NSE/p25-GFP mice were deprived from doxycycline for 16 weeks and exposed to doxycycline for 4 weeks. Tumors were collected and lysates were prepared as described in [40].

Positron Emission Tomography (PET)/Computed Tomography (CT) imaging

Mouse PET/CT imaging was performed using a Siemens Inveon PET/CT Multi Modality system (Siemens Medical Solutions, Knoxville, TN) with effective spatial resolution of 1.4 mm at the center of field of view (FOV). All animals were fasted for 12 h prior to PET imaging. Each mouse received 140 µCi of 2-deoxy-2-(18F)fluoro-D-glucose (FDG) in 150 µL in saline intravenously via tail vain injection. The mice were placed on a heat pad before and during image acquisition. PET images were acquired 1h post-injection (p.i.), for 15 min, with animals under 2.5% isoflurane. PET images were reconstructed into a single frame using the 3D Ordered Subsets Expectation Maximization (OSEM3D/MAP) algorithm. CT images were acquired immediately after PET with the FOV centered at the shoulder of the mouse. CT projections were acquired with a power of 80 kVp, current of 500 µA, exposure time of 145 ms, binning of 4, and effective pixel size of 102 µm. The CT reconstruction protocol used a downsampling factor of 2, was set to interpolate bilinearly, and used a Shepp-Logan filter. PET and CT images were co-registered in Inveon Acquisition Workplace (Siemens Medical Solutions) for analysis. Regions of interest (ROI) were drawn manually, encompassing the thyroid in all planes containing the organ. The target activity was calculated as percentage injected dose per gram.

Microarray and pathway analyses

For microarray analysis, total RNA from arrested and proliferating tumors was isolated using RNeasy kit (QIAGEN, Hilden, Germany). Gene expression profiling on each sample was performed using Illumina Mouse WG-6 V3 BeadArrays (San Diego, CA, USA). Bead-level data were obtained and pre-processed using the R package “mbcb” for background correction and probe summarization. Pre-processed data were then quartile-normalized and log-transformed. Class comparison and unsupervised hierarchical clustering was performed using in-house MATRIX 1.48 (Girard, L. Manuscript in preparation). The volcano plot was developed by transforming p-values obtained in the t-test and plotting the transformed p-value versus the log2 expression value obtained following microarray data processing in MATRIX 1.48. The networks and functional analyses were generated through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA® QI Redwood City, www.qiagen.com/ingenuity).

Reverse transcription real time PCR (RT-qPCR)

Tissues of proliferating malignant (n = 7) and arrested benign tumors (n = 6) were collected as described above and homogenized in Trizol reagent (Life Technologies). RNA was extracted using QIAGEN RNeasy Kit according to the supplier’s protocol. Purified RNA was treated with RNase-free recombinant DNase I (Roche Diagnostics GmbH). Reverse transcription was performed using iScript select cDNA Synthesis Kit with provided random primers according to manufacturer’s instructions (Biorad Laboratories, Hercules, CA, USA). The SYBR-green based DyNAmo Flash SYBR Green qPCR Kit (Thermo scientific, Waltham, MA, USA) containing ROX as an internal reference dye was used for amplification. Real-time PCR reactions were run on an AB 7500 Real-time PCR system (Applied Biosystems, Foster City, CA, USA) and the specificity of each reaction was controlled by melt curve analysis. Primers were purchased from Integrated DNA Technologies (Coralville, IA, USA) and designed as intron-spanning pairs when possible (Table S4). Relative expression levels were calculated according to the 2-ΔΔCt method [41]. Expression levels were normalized to Beta-2 microglobulin as endogenous control and calibrated to average expression level of proliferating tumors for each gene. Unpaired t-tests were used to compare changes in expression for each gene.
Cell culture, transfections and cell lysate preparation

MTC-SK cells were used for cell culture experiments. Those cells were derived from sporadic (non MEN) tumors and do not harbor RET mutations. MTC-SK cells were maintained in culture media containing Ham’s F12 (Lonza Group Ltd, Basel, Switzerland), Medium 199 (Sigma, St. Louis, MO, USA) 1:1 v/v and 10% FBS as described in [24]. For transfections, cells were plated at a density of 2.5x10⁴ cells/ml and transfected with either 1 μg pCMV-Kd-CDK5 [34] or 1 μg pCMV-EGFP (Clontech Laboratories, Inc., Mountain View, CA, USA) using X-tremeGene HP DNA transfection reagent (Roche Diagnostics GmbH, Mannheim, Germany). Cells were harvested 24 h post-transfection and lysate was prepared as previously described in [42].

Immunoblotting

Immunoblotting was conducted as previously described [43]. Membranes were probed with antibodies to p16INK4a (PA5-20379, Pierce, Rockford, IL; USA), p15INK4b (4822, Cell Signaling Technology (CST), Danvers, MA, USA), p18INK4c (39-3400, Life Technologies, Carlsbad, CA, USA), p19INK4d (PA5-26413, Pierce), p21CIP/WAF (2946, CST), p27KIP (2552, CST), CDK2 (sc-163, Santa Cruz Biotechnology (scbt), Santa Cruz, CA, USA), CDK4 (ab7955, Abcam, Cambridge, MA, USA), CDK6 (ABC275, Millipore, Temecula, CA, USA), Cyclin-A1 (sc-596, scbt), Cyclin-B1 (4135, CST), Cyclin D1 (ab134175, Abcam), Cyclin-E2 (4132, CST), GAPDH (G8795, Sigma), Tubulin (T5168, Sigma), STAT-3 (9132, CST) and pSTAT-3 (9134, CST) and pS6-inhibitor-1 were generated and characterized in-house [25]. The same membrane was probed for several proteins of different molecular weights after stripping in buffer containing 61 mM Tris-Base, 2%SDS and 7% β-mercaptoethanol at 50°C for 30 min. Immunoblots were quantified using Quantity One (BioRad). Samples were normalized to GAPDH (Figures 3 and 4) or to total protein levels as determined by Coomassie blue (CB) staining (Figure 5).

Statistical analysis

Results are presented as mean values and error bars represent ± SEM. Statistical analyses were conducted using two-tailed Student’s t-test in GraphPad Prism 6.0 (GraphPad Software, Inc., La Jolla, CA, USA) and p-values < 0.05 were considered as statistically significant.

ACKNOWLEDGMENTS

We thank Xiao-Min Yu (The University of Wisconsin) for help in obtaining human tumors, G. Mettlach for expert maintenance of the mouse colony and S. Hisanaga (University of Tokyo) for kinase-dead Cdk5 construct.

FUNDING

This research was supported by a North American Neuroendocrine Tumor Society fellowship (KP), U.S. National Institutes of Health Grants to H.C. (CA121115 and CA109053), F.E.N. (GM067674), and J.A.B. (MH79710, MH083711, DA016672, DA033485, and NS073855) and American Cancer Society MEN2 Thyroid Cancer Consortium Research Grants (RSGM-11-182-01, RPM-11-080-01 H.C.; RSGM-11-190-01, J.A.B.). The MD Anderson Cancer Center Sequencing and Microarray Facility is funded by NCI Grant CA016672 (SMF).

CONFLICT OF INTERESTS

The authors have no conflict of interests to declare.

REFERENCES

Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis

Supplementary Material

Figure S1. (A) RT-qPCR analysis of eGFP mRNA expression in proliferating malignant mouse MTC compared to arrested benign mouse MTCs; p-value < 0.0001 (N = 6 for each conditions. (B) Immunoblot of lysates from control, sporadic and hereditary human MTC probed with anti-PCNA antibodies. P-values were p = 0.2419 for Sp vs H, p = 0.0003 for Sp vs Co and p = 0.0223 for H vs Co. Data are represented as mean +/- SEM, N = 4 for each condition.
Table S1: A Table showing genes that are upregulated in proliferating malignant compared to arrested benign mouse MTCs. Genes that are mentioned in the main text are bolded.

<table>
<thead>
<tr>
<th>GENE SYMBOL</th>
<th>LOG2-FOLD UPREGULATION</th>
<th>P-VALUE</th>
<th>GENE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFP</td>
<td>6.88</td>
<td>0.00006</td>
<td>trophinin associated protein</td>
</tr>
<tr>
<td>Troap</td>
<td>5.2</td>
<td>0.00000</td>
<td>PDZ binding kinase</td>
</tr>
<tr>
<td>Pbk</td>
<td>5.1</td>
<td>0.00005</td>
<td>SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae)</td>
</tr>
<tr>
<td>Spc25</td>
<td>4.95</td>
<td>0.00003</td>
<td>hypothetical protein LOC640739</td>
</tr>
<tr>
<td>LOC640739</td>
<td>4.91</td>
<td>0.00000</td>
<td>predicted gene 15428; RIKEN cDNA 2810417H13 gene; predicted gene 9171</td>
</tr>
<tr>
<td>Kif18b</td>
<td>4.68</td>
<td>0.00070</td>
<td>kinesin family member 18B</td>
</tr>
<tr>
<td>Birc5</td>
<td>4.63</td>
<td>0.00000</td>
<td>budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae)</td>
</tr>
<tr>
<td>Cispn</td>
<td>4.62</td>
<td>0.00002</td>
<td>clasin homolog (Xenopus laevis)</td>
</tr>
<tr>
<td>Gtse1</td>
<td>4.44</td>
<td>0.00000</td>
<td>G two S phase expressed protein 1</td>
</tr>
<tr>
<td>Ckap2</td>
<td>4.43</td>
<td>0.00037</td>
<td>cytoskeleton associated protein 2</td>
</tr>
<tr>
<td>Crabp1</td>
<td>4.38</td>
<td>0.00024</td>
<td>cellular retinoic acid binding protein 1</td>
</tr>
<tr>
<td>LOC100042970</td>
<td>4.31</td>
<td>0.00006</td>
<td></td>
</tr>
<tr>
<td>Brnn1</td>
<td>4.29</td>
<td>0.00001</td>
<td>barren homolog (Drosophila)</td>
</tr>
<tr>
<td>Arhgef39</td>
<td>4.26</td>
<td>0.00056</td>
<td>Rho guanine nucleotide exchange factor (GEF) 39</td>
</tr>
<tr>
<td>Cdc2a</td>
<td>4.22</td>
<td>0.00013</td>
<td>cyclin-dependent kinase 1</td>
</tr>
<tr>
<td>Plk1</td>
<td>4.18</td>
<td>0.00108</td>
<td>polo-like kinase 1 (Drosophila)</td>
</tr>
<tr>
<td>Rad51</td>
<td>4.18</td>
<td>0.00010</td>
<td>RAD51 homolog (S. cerevisiae)</td>
</tr>
<tr>
<td>Cdc2a3</td>
<td>4.14</td>
<td>0.00028</td>
<td>cell division cycle associated 3</td>
</tr>
<tr>
<td>Ccnb1</td>
<td>4.13</td>
<td>0.00008</td>
<td>cyclin B1</td>
</tr>
<tr>
<td>Ncaph</td>
<td>4.12</td>
<td>0.00084</td>
<td>non-SMC condensin I complex, subunit H</td>
</tr>
<tr>
<td>Knstrn</td>
<td>4.06</td>
<td>0.00039</td>
<td>kinetochore-localized astrin/SPAG5 binding</td>
</tr>
<tr>
<td>Aurkb</td>
<td>4.06</td>
<td>0.00114</td>
<td>aurora kinase B</td>
</tr>
<tr>
<td>Rrm2</td>
<td>4.05</td>
<td>0.00007</td>
<td>ribonucleotide reductase M2</td>
</tr>
<tr>
<td>Cenpa</td>
<td>4.03</td>
<td>0.00076</td>
<td>centromere protein A</td>
</tr>
<tr>
<td>Cdkn3</td>
<td>4.01</td>
<td>0.00043</td>
<td>cyclin-dependent kinase inhibitor 3</td>
</tr>
<tr>
<td>LOC667005</td>
<td>4.01</td>
<td>0.00068</td>
<td></td>
</tr>
<tr>
<td>Chc1</td>
<td>4.00</td>
<td>0.00098</td>
<td>clathrin heavy chain linker domain containing 1</td>
</tr>
<tr>
<td>Kif4</td>
<td>3.91</td>
<td>0.00006</td>
<td>kinesin family member 4</td>
</tr>
<tr>
<td>Nusap1</td>
<td>3.85</td>
<td>0.00024</td>
<td>nucleolar and spindle associated protein 1</td>
</tr>
<tr>
<td>Spag5</td>
<td>3.85</td>
<td>0.00066</td>
<td>sperm associated antigen 5</td>
</tr>
<tr>
<td>Sgol1</td>
<td>3.83</td>
<td>0.00053</td>
<td>shugoshin-like 1 (S. pombe)</td>
</tr>
<tr>
<td>Gene</td>
<td>Fold</td>
<td>p-value</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Uhrf1</td>
<td>3.83</td>
<td>0.00008</td>
<td>ubiquitin-like, containing PHD and RING finger domains, 1; predicted gene 5648; similar to nuclear zinc finger protein Np95</td>
</tr>
<tr>
<td>Top2a</td>
<td>3.78</td>
<td>0.00010</td>
<td>topoisomerase (DNA) II alpha</td>
</tr>
<tr>
<td>Cit</td>
<td>3.77</td>
<td>0.00055</td>
<td>citron</td>
</tr>
<tr>
<td>Prcl</td>
<td>3.77</td>
<td>0.00022</td>
<td>protein regulator of cytokinesis 1</td>
</tr>
<tr>
<td>Esco2</td>
<td>3.76</td>
<td>0.00048</td>
<td>establishment of cohesion 1 homolog 2 (S. cerevisiae)</td>
</tr>
<tr>
<td>Mcm10</td>
<td>3.76</td>
<td>0.00000</td>
<td>minichromosome maintenance deficient 10 (S. cerevisiae)</td>
</tr>
<tr>
<td>Cenpi</td>
<td>3.74</td>
<td>0.00003</td>
<td>centromere protein 1</td>
</tr>
<tr>
<td>Kif15</td>
<td>3.66</td>
<td>0.00009</td>
<td>kinesin family member 15</td>
</tr>
<tr>
<td>Mki67</td>
<td>3.62</td>
<td>0.00013</td>
<td>antigen identified by monoclonal antibody Ki 67</td>
</tr>
<tr>
<td>Cdca8</td>
<td>3.56</td>
<td>0.00003</td>
<td>cell division cycle associated 8</td>
</tr>
<tr>
<td>C79407</td>
<td>3.56</td>
<td>0.00022</td>
<td>expressed sequence C79407</td>
</tr>
<tr>
<td>Cdc20</td>
<td>3.54</td>
<td>0.00005</td>
<td>cell division cycle 20 homolog (S. cerevisiae)</td>
</tr>
<tr>
<td>Histh2ag</td>
<td>3.53</td>
<td>0.00001</td>
<td>histone cluster 1, H2ad; histone cluster 1, H2ae; histone cluster 1, H2ag; histone cluster 1, H2ah; histone cluster 1, H2ai; similar to histone 2a; histone cluster 1, H2an; histone cluster 1, H2ao; histone cluster 1, H2ac; histone cluster 20 homolog 1, H2ab</td>
</tr>
<tr>
<td>Ccne2</td>
<td>3.52</td>
<td>0.00062</td>
<td>cyclin E2</td>
</tr>
<tr>
<td>Ckap2l</td>
<td>3.49</td>
<td>0.00010</td>
<td>cytoskeleton associated protein 2-like</td>
</tr>
<tr>
<td>Cdc25c</td>
<td>3.45</td>
<td>0.00040</td>
<td>cell division cycle 25 homolog C (S. pombe)</td>
</tr>
<tr>
<td>Kif23</td>
<td>3.42</td>
<td>0.00002</td>
<td>kinesin family member 23</td>
</tr>
<tr>
<td>Sapcd2</td>
<td>3.41</td>
<td>0.00005</td>
<td>suppressor APC domain containing 2</td>
</tr>
<tr>
<td>Igagap2</td>
<td>3.39</td>
<td>0.00024</td>
<td>IQ motif containing GTPase activating protein 3</td>
</tr>
<tr>
<td>Cenpm</td>
<td>3.34</td>
<td>0.00002</td>
<td>centromere protein M</td>
</tr>
<tr>
<td>Kif11</td>
<td>3.32</td>
<td>0.00114</td>
<td>kinesin family member 11</td>
</tr>
<tr>
<td>Cd177</td>
<td>3.32</td>
<td>0.00078</td>
<td>CD177 antigen</td>
</tr>
<tr>
<td>Chek1</td>
<td>3.27</td>
<td>0.00005</td>
<td>checkpoint kinase 1 homolog (S. pombe)</td>
</tr>
<tr>
<td>Histh2ah</td>
<td>3.23</td>
<td>0.00006</td>
<td>histone cluster 1, H2ad; histone cluster 1, H2ae; histone cluster 1, H2ag; histone cluster 1, H2ah; histone cluster 1, H2ai; similar to histone 2a; histone cluster 1, H2an; histone cluster 1, H2ao; histone cluster 1, H2ac; histone cluster 1, H2ab</td>
</tr>
<tr>
<td>Sgoi2</td>
<td>3.23</td>
<td>0.00002</td>
<td>shugoshin-like 2 (S. pombe)</td>
</tr>
<tr>
<td>Ncagpg2</td>
<td>3.2</td>
<td>0.00009</td>
<td>non-SMC condensin II complex, subunit G2</td>
</tr>
<tr>
<td>Dmkn</td>
<td>3.19</td>
<td>0.00032</td>
<td>dermokine</td>
</tr>
<tr>
<td>Ska3</td>
<td>3.18</td>
<td>0.00049</td>
<td>spindle and kinetochore associated complex subunit 3</td>
</tr>
<tr>
<td>Histh2ak</td>
<td>3.17</td>
<td>0.00003</td>
<td>histone cluster 1, H2ak</td>
</tr>
<tr>
<td>Histh2ad</td>
<td>3.13</td>
<td>0.00024</td>
<td>histone cluster 1, H2ad; histone cluster 1, H2ae; histone cluster 1, H2ag; histone cluster 1, H2ab</td>
</tr>
<tr>
<td>Gene</td>
<td>Fold Change</td>
<td>P-value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Rad54b</td>
<td>3.13</td>
<td>0.00101</td>
<td>RAD54 homolog B (S. cerevisiae)</td>
</tr>
<tr>
<td>Cenpn</td>
<td>3.12</td>
<td>0.00011</td>
<td>centromere protein N</td>
</tr>
<tr>
<td>Ccn1</td>
<td>3.1</td>
<td>0.00058</td>
<td>cyclin A1</td>
</tr>
<tr>
<td>2210011C24Rik</td>
<td>3.05</td>
<td>0.00000</td>
<td>RIKEN cDNA 2210011C24 gene</td>
</tr>
<tr>
<td>Depdc1b</td>
<td>3.05</td>
<td>0.00020</td>
<td>DEP domain containing 1B</td>
</tr>
<tr>
<td>Hmg2b</td>
<td>3.05</td>
<td>0.00008</td>
<td>predicted gene 13160; predicted gene 8681; predicted gene 13237; predicted gene 4169; predicted gene 8284; similar to High mobility group box 2; predicted gene 13167; high mobility group box 2; predicted gene 13232</td>
</tr>
<tr>
<td>Cenph</td>
<td>3.02</td>
<td>0.00033</td>
<td>centromere protein H</td>
</tr>
<tr>
<td>Kif18a</td>
<td>2.92</td>
<td>0.00077</td>
<td>kinesin family member 18A</td>
</tr>
<tr>
<td>Hist1h2af</td>
<td>2.87</td>
<td>0.00001</td>
<td>histone cluster 1, H2af</td>
</tr>
<tr>
<td>Tcf19</td>
<td>2.86</td>
<td>0.00003</td>
<td>transcription factor 19</td>
</tr>
<tr>
<td>Nrm</td>
<td>2.85</td>
<td>0.00010</td>
<td>nurim (nuclear envelope membrane protein)</td>
</tr>
<tr>
<td>Cep55</td>
<td>2.83</td>
<td>0.00033</td>
<td>centrosomal protein 55</td>
</tr>
<tr>
<td>Hist2h2ab</td>
<td>2.82</td>
<td>0.00011</td>
<td>histone cluster 2, H2ab</td>
</tr>
<tr>
<td>Hist1h2an</td>
<td>2.81</td>
<td>0.00010</td>
<td>histone cluster 1, H2ad; histone cluster 1, H2ae; histone cluster 1, H2ag; histone cluster 1, H2ah; histone cluster 1, H2ai; similar to histone 2a; histone cluster 1, H2ao; histone cluster 1, H2ac; histone cluster 1, H2ab</td>
</tr>
<tr>
<td>Oip5</td>
<td>2.78</td>
<td>0.00058</td>
<td>Opa interacting protein 5</td>
</tr>
<tr>
<td>BC004701</td>
<td>2.76</td>
<td>0.00029</td>
<td>baculoviral IAP repeat-containing 5</td>
</tr>
<tr>
<td>Tymns</td>
<td>2.74</td>
<td>0.00019</td>
<td>thymidylate synthase</td>
</tr>
<tr>
<td>Fbln1</td>
<td>2.7</td>
<td>0.00108</td>
<td>fibulin 1</td>
</tr>
<tr>
<td>Rad51ap1</td>
<td>2.69</td>
<td>0.00076</td>
<td>RAD51 associated protein 1</td>
</tr>
<tr>
<td>Chaf1b</td>
<td>2.68</td>
<td>0.00045</td>
<td>chromatin assembly factor 1, subunit B (p60)</td>
</tr>
<tr>
<td>Pif1</td>
<td>2.67</td>
<td>0.00015</td>
<td>PIF1 5'-to-3' DNA helicase homolog (S. cerevisiae)</td>
</tr>
<tr>
<td>Tmem91</td>
<td>2.61</td>
<td>0.00068</td>
<td>transmembrane protein 91</td>
</tr>
<tr>
<td>Gins1</td>
<td>2.6</td>
<td>0.00040</td>
<td>GINS complex subunit 1 (Psf1 homolog)</td>
</tr>
<tr>
<td>Bub1b</td>
<td>2.54</td>
<td>0.00023</td>
<td>budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae)</td>
</tr>
<tr>
<td>Fam132b</td>
<td>2.53</td>
<td>0.00101</td>
<td>family with sequence similarity 132, member B</td>
</tr>
<tr>
<td>Rad54l</td>
<td>2.47</td>
<td>0.00064</td>
<td>RAD54 like (S. cerevisiae)</td>
</tr>
<tr>
<td>Hist1h2ai</td>
<td>2.44</td>
<td>0.00012</td>
<td>histone cluster 1, H2ad; histone cluster 1, H2ae; histone cluster 1, H2ag; histone cluster 1, H2ah; histone cluster 1, H2ai; similar to histone 2a; histone cluster 1, H2ao; histone cluster 1, H2ac; histone cluster 1, H2ab</td>
</tr>
<tr>
<td>Gene</td>
<td>log2 Fold Change</td>
<td>p-value</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Tyms-ps</td>
<td>2.44</td>
<td>0.00006</td>
<td>thymidylate synthase, pseudogene</td>
</tr>
<tr>
<td>H2ac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melk</td>
<td>2.42</td>
<td>0.00005</td>
<td>maternal embryonic leucine zipper kinase</td>
</tr>
<tr>
<td>Psrc1</td>
<td>2.42</td>
<td>0.00063</td>
<td>proline/serine-rich coiled-coil 1</td>
</tr>
<tr>
<td>B230323D24Rik</td>
<td>2.39</td>
<td>0.00073</td>
<td></td>
</tr>
<tr>
<td>Phf19</td>
<td>2.36</td>
<td>0.00014</td>
<td>PHD finger protein 19</td>
</tr>
<tr>
<td>Cthrc1</td>
<td>2.35</td>
<td>0.00061</td>
<td>collagen triple helix repeat containing 1</td>
</tr>
<tr>
<td>Cenpw</td>
<td>2.33</td>
<td>0.00007</td>
<td>centromere protein W</td>
</tr>
<tr>
<td>Recq4</td>
<td>2.31</td>
<td>0.00011</td>
<td>RecQ protein-like 4</td>
</tr>
<tr>
<td>Pkmyt1</td>
<td>2.28</td>
<td>0.00029</td>
<td>protein kinase, membrane associated tyrosine/threonine 1</td>
</tr>
<tr>
<td>scl0002507.1_236</td>
<td>2.26</td>
<td>0.00044</td>
<td></td>
</tr>
<tr>
<td>Kcne2</td>
<td>2.25</td>
<td>0.00009</td>
<td>potassium voltage-gated channel, Isk-related subfamily, gene 2</td>
</tr>
<tr>
<td>Gas213</td>
<td>2.24</td>
<td>0.00012</td>
<td>similar to growth arrest specific 2 like 3; growth arrest-specific 2 like 3</td>
</tr>
<tr>
<td>S1c4a1</td>
<td>2.22</td>
<td>0.00053</td>
<td>solute carrier family-specific 4 (anion exchanger), member 1</td>
</tr>
<tr>
<td>Ccr5</td>
<td>2.21</td>
<td>0.00008</td>
<td>chemokine (C-C motif) receptor 5</td>
</tr>
<tr>
<td>Pcn</td>
<td>2.21</td>
<td>0.00071</td>
<td>proliferating cell nuclear antigen; similar to proliferating cell nuclear antigen (DNA polymerase delta auxiliary protein)</td>
</tr>
<tr>
<td>Dbf4</td>
<td>2.2</td>
<td>0.00050</td>
<td>DBF4 homolog (S. cerevisiae)</td>
</tr>
<tr>
<td>Fam111a</td>
<td>2.19</td>
<td>0.00001</td>
<td>family with sequence similarity 111, member A</td>
</tr>
<tr>
<td>Tmpo</td>
<td>2.16</td>
<td>0.00033</td>
<td>thymopoietin</td>
</tr>
<tr>
<td>Mad2l1</td>
<td>2.15</td>
<td>0.00014</td>
<td>similar to spindle assembly checkpoint protein; MAD2 mitotic arrest deficient-like 1 (yeast)</td>
</tr>
<tr>
<td>Spink4</td>
<td>2.14</td>
<td>0.00033</td>
<td>serine peptidase inhibitor, Kazal type 4</td>
</tr>
<tr>
<td>Smc4</td>
<td>2.13</td>
<td>0.00003</td>
<td>structural maintenance of chromosomes 4</td>
</tr>
<tr>
<td>Fabp5</td>
<td>2.12</td>
<td>0.00043</td>
<td>fatty acid binding protein 5, epidermal</td>
</tr>
<tr>
<td>4930427A07Rik</td>
<td>2.11</td>
<td>0.00048</td>
<td>RIKEN cDNA 4930427A07 gene</td>
</tr>
<tr>
<td>LOC245892</td>
<td>2.1</td>
<td>0.00037</td>
<td></td>
</tr>
<tr>
<td>Arpp21</td>
<td>2.06</td>
<td>0.00027</td>
<td>cyclic AMP-regulated phosphoprotein, 21</td>
</tr>
<tr>
<td>Ddx11</td>
<td>2.03</td>
<td>0.00109</td>
<td>DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S. cerevisiae)</td>
</tr>
</tbody>
</table>
Table S2: A Table showing downregulated genes in proliferating malignant compared to arrested benign mouse MTCs

<table>
<thead>
<tr>
<th>GENE SYMBOL</th>
<th>LOG2-FOLD UPREGULATION</th>
<th>P-VALUE</th>
<th>GENE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epb4.1l5</td>
<td>-2.54</td>
<td>0.001</td>
<td>erythrocyte protein band 4.1-like 5</td>
</tr>
<tr>
<td>KIF17</td>
<td>-2.45</td>
<td>0.001</td>
<td>kinesin family member 17</td>
</tr>
<tr>
<td>Lepre1</td>
<td>-2.23</td>
<td>0.001</td>
<td>leprecan-like 1</td>
</tr>
<tr>
<td>Lgals4</td>
<td>-2.21</td>
<td>0.000</td>
<td>lectin, galactose binding, soluble 4</td>
</tr>
<tr>
<td>LOC385274</td>
<td>-2.19</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Luzp2</td>
<td>-2.36</td>
<td>0.001</td>
<td>leucine zipper protein 2</td>
</tr>
<tr>
<td>Mtap2</td>
<td>-3.52</td>
<td>0.000</td>
<td>microtubule-associated protein 2</td>
</tr>
</tbody>
</table>
Supplemental methods: analysis of somatic RET mutation

Genomic DNA was isolated from dissected sections containing at least 80% of neoplastic cells using the QIAamp DNA FFPE tissue kit (QIAGEN, Valencia, CA) according to the manufacturer’s instructions. DNA was amplified by PCR using primers flanking known mutational hotspots (see Table below). PCR reactions were performed in 25 μL and consisted of: 1× PCR buffer, 250 ng of genomic DNA, 0.4 μmol/L each primer, 0.1 mmol/L each deoxynucleoside triphosphates, 0.75 unit of TaKaRa LA Taq DNA Polymerase (TaKaRa Bio USA, Madison, WI). After an initial cycle of denaturation at 94°C for 3 minutes, amplifications were performed as follows: 40 cycles of denaturation at 94°C for 45 seconds, annealing at 58°C for 30 seconds, and extension at 72°C for 90 seconds with and final extension at 72°C for 10 minutes. The PCR products were cleaned up with ExoSAP-IT (USB, Cleveland, OH) according to manufacturer instructions and sent to the core facility for sequencing using nested primers.

<table>
<thead>
<tr>
<th>EXON</th>
<th>FORWARD PRIMER SEQUENCE (5′-3′)</th>
<th>REVERSE PRIMER SEQUENCE (5′-3′)</th>
<th>SEQUENCING PRIMER (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>GGCTAAGCCAAAGCTG CTG</td>
<td>CCTGAAACTCCCTCCCCTGC</td>
<td>TATGCTTGCGACACCAGTTG</td>
</tr>
<tr>
<td>11</td>
<td>GTTCTCAGGCCCTCCC ACAC</td>
<td>TGCAGGGCAGGGAAGATCCCC</td>
<td>ACACCTCCATGGCCACCTTC</td>
</tr>
<tr>
<td>13</td>
<td>CTCTGTGTCTGAACCTTTGGCC</td>
<td>CTACTGCTCTGCCCCCTGTCT</td>
<td>AGGTCCACCTCTGACCTGGTA</td>
</tr>
<tr>
<td>14</td>
<td>TCCACCCCTTACTCA TTGG</td>
<td>GAAAGATACCGAAGATT AGTG</td>
<td>GCATGGTGGGCTAGAGTGG</td>
</tr>
<tr>
<td>15</td>
<td>TCCACCCCTTACTCA TTGG</td>
<td>GAAAGATACCGAAGATT AGTG</td>
<td>CATGTCACACCTTGACCTCCA</td>
</tr>
<tr>
<td>16</td>
<td>ACTCCGCGCCACTCT CAG</td>
<td>GTTCGAGGCAAAATGG CT</td>
<td>GCCCTTTCAAGATGTGTGT</td>
</tr>
</tbody>
</table>

Exons 14 and 15 were amplified as a single PCR product
<table>
<thead>
<tr>
<th>GENE NAME</th>
<th>GENE SYMBOL</th>
<th>ACCESSION NO</th>
<th>PRIMER SEQUENCE 5' - 3'</th>
<th>AMPLICON (BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFP</td>
<td></td>
<td></td>
<td>F: ATCATGGCCGACACAAGCAGAAGAC R: GTACAGCTCCTGGATGCCGGAGATG</td>
<td>257</td>
</tr>
<tr>
<td>B2m</td>
<td>cdkn2b</td>
<td>NM007670</td>
<td>F: AGCTGGGTCTGGTCTTGAG R: GATCAGAATTCATTGC</td>
<td>130</td>
</tr>
<tr>
<td>p15INK4b</td>
<td>cdkn2a</td>
<td>NM007671</td>
<td>F: GGCTGGTCGTTTTACATATCA R: TTTTAACGGTTGCTG</td>
<td>85</td>
</tr>
<tr>
<td>p19INK4d</td>
<td>cdkn2d</td>
<td>NM009878</td>
<td>F: TTGAAGAGGAGGAGAGGAGGA R: ACGCTTAGGCGCTGTTG</td>
<td>153</td>
</tr>
<tr>
<td>p21CIP/WAF1</td>
<td>cdkn1a</td>
<td>NM007669</td>
<td>F: GTACTTTCTCTGGCCCTTG R: TCTGCGCTGGAGTGTAGA</td>
<td>173</td>
</tr>
<tr>
<td>p27KIP</td>
<td>cdkn1b</td>
<td>NM009875</td>
<td>F: GTCACGGATGAGGAGGAC R: CAGTGCACGGTTG</td>
<td>108</td>
</tr>
<tr>
<td>cyclin A1</td>
<td>ccna1</td>
<td>NM007628</td>
<td>F: ATCCTGAAAGGGAGGAGGA R: GCATGGGAAACTGTGTTGA</td>
<td>135</td>
</tr>
<tr>
<td>cyclin B1</td>
<td>ccnb1</td>
<td>NM172301</td>
<td>F: GCTTCTCTGAGCAGGACAGCT R: CACAGGGTGACCATGTTCAA</td>
<td>170</td>
</tr>
<tr>
<td>cyclin D1</td>
<td>ccnd1</td>
<td>NM007631</td>
<td>F: GCGTACCTGACACCAATCT R: CACAGACCTCCAGCATCCAG</td>
<td>160</td>
</tr>
<tr>
<td>cyclin E1</td>
<td>ccne1</td>
<td>NM007633</td>
<td>F: GCACAAATGTCGGCCGTTTT R: GATGAAATGAGGAGGAGGTC</td>
<td>115</td>
</tr>
<tr>
<td>cyclin E2</td>
<td>ccne2</td>
<td>NM001037134</td>
<td>F: AGAGAGAAACACAGCAGAGAGATGC R: ATGCAAGGGGCTGATTTCC</td>
<td></td>
</tr>
<tr>
<td>p35</td>
<td>cdk5r1</td>
<td>NM009871</td>
<td>F: GGGCTGGGGTTTGGGAAGTG R: GGAACCCCTCCGCAGTCTTT</td>
<td>110</td>
</tr>
<tr>
<td>Cdk1</td>
<td>cdk1</td>
<td>NM007659</td>
<td>F: GTCCGTCGTAACCTGGTTAG R: ACCACACCGTAAATGCTTCTCT</td>
<td>78</td>
</tr>
<tr>
<td>Cdk2</td>
<td>cdk2</td>
<td>NM016756</td>
<td>F: CTGGGCTCAAGTACTTACCC R: CCTGCGGGTACCATTCC</td>
<td>78</td>
</tr>
<tr>
<td>Cdk4</td>
<td>cdk4</td>
<td>NM009870</td>
<td>F: GAAGCAGTCCCCGGTGATG R: GAAGCAGGAGGTCATTTAGC</td>
<td>98</td>
</tr>
<tr>
<td>Cdk5</td>
<td>cdk5</td>
<td>NM007668</td>
<td>F: ACCCAGCTACAACATCCTTG R: CGTCAGACGGGTACACTT</td>
<td>97</td>
</tr>
<tr>
<td>Cdk6</td>
<td>cdk6</td>
<td>NM009873</td>
<td>F: ACCCAGAAACACATAAAGAGTA R: GCGGTTCAGATCAGATG</td>
<td>95</td>
</tr>
</tbody>
</table>
Aberrant Cdk5 Causes Thyroid Cancer
The Role of Cdk5 in Neuroendocrine Thyroid Cancer

Karine Pozo,1 Emely Castro-Rivera,1 Chunfeng Tan,1 Florian Plattner,1 Gert Schwach,2 Veronika Siegl,2 Douglas Meyer,1 Ailan Guo,3 Justin Gundara,4 Gabriel Mettlach,1 Edmond Richer,5 Jonathan A. Guevara,6 Li Ning,7 Anjali Gupta,6 Guiyang Hao,6 Li-Huei Tsai,8 Xiankai Sun,5 Pietro Antich,5 Stanley Sidhu,4 Bruce G. Robinson,4 Herbert Chen,7 Fiemu E. Nwariaku,9,10 Roswitha Pfragner,2 James A. Richardson,11,12 and James A. Bibb1,10,13,*

1Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
2Institute of Pathophysiology and Immunology, Medical University of Graz, 8010 Graz, Austria
3Cell Signaling Technology, Danvers, MA 01923, USA
4Department of Cancer Genetics, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2650, Australia
5Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
6Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
7Endocrine Surgery Research Laboratory, University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
8Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
9Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
10Harold B. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
11Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
12Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
13Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
*Correspondence: james.bibb@utsouthwestern.edu
http://dx.doi.org/10.1016/j.ccr.2013.08.027

SUMMARY

Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer that originates from calcitonin-secreting parafollicular cells, or C cells. We found that Cdk5 and its cofactors p35 and p25 are highly expressed in human MTC and that Cdk5 activity promotes MTC proliferation. A conditional MTC mouse model was generated and corroborated the role of aberrant Cdk5 activation in MTC. C cell-specific overexpression of p25 caused rapid C cell hyperplasia leading to lethal MTC, which was arrested by repressing p25 overexpression. A comparative phosphoproteomic screen between proliferating and arrested MTC identified the retinoblastoma protein (Rb) as a crucial Cdk5 downstream target. Prevention of Rb phosphorylation at Ser807/Ser811 attenuated MTC proliferation. These findings implicate Cdk5 signaling via Rb as critical to MTC tumorigenesis and progression.

INTRODUCTION

Neuroendocrine tumors are relatively rare neoplasms characterized by abnormal hormone secretion, an indolent course, specific genetic mutations, and a poor response to conventional therapies. Medullary thyroid carcinoma (MTC) arises from C cells and metastasizes frequently to regional lymph nodes, bones, lungs, liver, and brain. Although MTC accounts for only 3–5% of all thyroid cancers, it represents more than 14% of thyroid-cancer-related deaths and affects both men and women, almost equally (Massoll and Mazzaferrri, 2004; Sippel et al., 2008).

Approximately 25% of MTC cases are hereditary and occur as familial MTC or as a component of the multiple endocrine neoplasia 2 (MEN2) syndromes. MEN2A and MEN2B are autosomal-dominant syndromes in which MTC is frequently associated with pheochromocytoma (adrenal gland cancer). MEN2B is the more severe form of the syndromes, and affected patients develop additional symptoms such as mucosal neuromas and marfanoid habitus. These genetic forms of MTC originate from activating germline mutations in the rearranged during transfection (RET) proto-oncogene (Liska et al., 2005), which encodes a tyrosine kinase receptor for the glial-derived neurotrophic factor.
family (GDNF; neurturin, artemin, and persephin) (Takahashi, 2001). Mechanisms by which RET mutations lead to MTC have been extensively studied (Asai et al., 2006). However, the majority of MTC cases (>75%) arise spontaneously, and only 40% of these so-called sporadic cases are caused by somatic RET mutations.

The molecular basis of sporadic MTC is poorly understood (Hu and Cote, 2012), although mutations in the RAS family of small GTPase genes have recently been identified in RET-negative MTC cases and RAS has been proposed to act as an alternative driver to RET in MTC tumorigenesis (Agrawal et al., 2013; Boichard et al., 2012; Ciampi et al., 2013). Consequently, therapeutic strategies are limited (Schlumberger et al., 2008). Currently, complete surgical removal of the thyroid remains the primary treatment for early-stage MTC patients (Fialkowski and Moley, 2012). However, recurrence is common and metastases are able online. Because neoplastic C cell hyperplasia is an early step in the development of MTC, we examined Cdk5 and p35/p25 expression in resected malignant specimens from 17 MTC patients who underwent thyroidectomy. Cdk5 and p35/p25 expression was apparent in all MTC samples (Figures 1A, 1C, and 1D; Figure S1A). Notably, Cdk5 and its activators were expressed at higher levels in sporadic MTC samples than in noncancerous thyroid tissues (Figures 1C and 1D; Figure S1A). Interestingly, Cdk5, p35, and p25 levels were not consistently elevated in MEN2A specimens compared to control tissues, suggesting possible mechanistic differences between at least some hereditary and sporadic forms of this cancer (Figure 1D). Furthermore, rising levels of MTC (% neoplastic cellularity) correlated with increasing p35/p25 expression in sporadic MTC patient samples that were graded histopathologically (Figure 1E). Altogether, these findings suggest that Cdk5 activity may be important for human sporadic MTC tumorigenesis.

To investigate further the possible role of Cdk5 in MTC progression, we assessed Cdk5, p35, and p25 expression in a panel of six human cell lines derived from sporadic MTC (Pfragner et al., 2002). All MTC cell lines exhibited Cdk5 and p35 expression as well as p25 generation (Figure 2A). Because cultures of normal human thyroid C cell cultures are difficult to establish because of the low C cell content in a human thyroid biopsy (~1%), cultured normal human diploid fibroblasts (NDF) were used as controls. NDF also exhibited p35 expression. However, very little Cdk5 or p25 was detected in these cells. Treatment of MTC cells with the Cdk5 inhibitor CP681301 (Karran and Palmer, 2007; Sadleir and Vassar, 2012; Wen et al., 2008) stopped their proliferation and significantly reduced their viability (Figures 2B and S2A). However, Cdk5 inhibition had little or no effect on the proliferation and viability of NDF cells (Figure S2A). With these positive results in hand, MTC-SK and SIN-J were selected as representative for further analysis. MTC-SK cells were derived from a solid sporadic MTC tumor, whereas SIN-J cells originated from metastatic sporadic MTC (Pfragner et al., 1990; Pfragner et al., 1993). Both have been characterized for their close similarity to MTC tumor cells and express appreciable levels of Cdk5, p35, and p25.

CP681301 is moderately selective for Cdk5 over Cdk2 in vitro (2.8-fold). To confirm CP681301 specificity for Cdk5 over Cdk2, we immunoprecipitated either Cdk5 or Cdk2 using cell lysates from CP681301-treated MTC-SK and SIN-J cells and assessed the activity of each kinase in vitro using histone H1 as a substrate. Cdk5 but not Cdk2 activity was inhibited by CP681301 at the concentrations used in this study for both cell lines (Figure 2C; Figure S2B). Furthermore, competing with endogenous Cdk5 activity by expressing a kinase-dead (KD) Cdk5 mutant also reduced MTC-SK (Figure 2D) and SIN-J (Figure S2C) cell proliferation. As for pharmacological inhibition, this reduction in cell growth correlated with a reduction in Cdk5 activity in both cell lines (Figure 2E; Figure S2D). Moreover, siRNA-mediated knockdown of the Cdk5 activator p35 also reduced MTC-SK and SIN-J cell growth (Figure 2F; Figure S2E). Again, p35 siRNA significantly reduced Cdk5 activity in MTC-SK and SIN-J cells without affecting Cdk2 activity (Figure 2G; Figure S2F). Together these findings indicate that Cdk5 activity, as dictated by the expression of its activating cofactors p35 and p25, is critical to...
Figure 1. Cdk5 and Its Cofactors Are Expressed in Human Thyroid and in MTC
(A) Contiguous sections of normal human thyroid, sporadic medullary thyroid tumors, and hereditary medullary thyroid tumors (MEN2A syndrome) are immunostained for calcitonin, Cdk5, and p35/p25. Scale bars are 20 μm for normal tissue stains and 100 μm for tumor stains (MEN2A, sporadic).
(B) High magnification image of normal thyroid costained for Cdk5 (brown) and calcitonin (dark blue) is shown. The arrow indicates C cell. Scale bar is 20 μm.
(C) Representative immunoblots of lysates from nonmalignant (Norm), sporadic (Spo), and familial (MEN2A) cancerous human thyroid specimens for Cdk5, p35/p25, and GAPDH are shown.
(D) Quantification of (C) is shown. Each point represents the protein expression level normalized to the loading control for each sample. Horizontal bar lines represent mean values for nonmalignant (n = 4–8), sporadic (n = 10–12), and MEN2A (n = 7). For Cdk5, Spo, p = 0.0048 and MEN2A, p = 0.4411; for p35, Spo, p = 0.0317 and MEN2A, p = 0.0893; for p25, Spo, p < 0.0001 and MEN2A, p = 0.2305 in a two-tailed unpaired Student’s t test with Welch’s correction. Vertical error bars represent ± SEM.
(E) Immunoblots show the expression of Cdk5, p35, and p25 in samples of sporadic MTC patients at different stages of the disease and quantification. The percentage of MTC cellularity was determined during the pathological analysis by quantifying microscopically the percentage of a representative slice that was occupied by the MTC (see Supplemental Experimental Procedures). Values for each MTC sample were normalized to the loading control. Data represents mean values of n = 1–8 samples as indicated. Error bars represent ± SEM.
See also Figure S1.
the proliferation of human sporadic MTC cells and may contribute to some cases of MTC.

P25 Overexpression and Associated Cdk5 Activity Result in Thyroid Tumor Formation

To delineate the effects of aberrant Cdk5 activation in MTC tumorigenesis, we used the neuron-specific enolase (NSE) promoter to drive GFP-tagged p25 overexpression (p25OE) in C cells. In this bitransgenic mouse model, p25OE is regulated via a tetracycline-controlled transactivator (Tet) system, which is driven by the NSE promoter (Figure 3A) (Meyer et al., 2008). In this model, p25OE can be induced by withdrawal of the tetracycline analog doxycycline from the animal diet (Cruz et al., 2003), while administration of doxycycline readily represses p25OE. The p25OE mice developed large, bilateral thyroid tumors 16–25 weeks after doxycycline removal (Figure 3B). These fast-growing tumors were malignant as shown by FDG uptake during PET imaging (Figures 3C and 3D). No p25OE mice survived past 30 weeks off doxycycline (Figure 3E). In contrast, control littermates that lacked p25-GFP transgene had normal thyroids and survival rates (Figures 3B and 3E). The tumors expressed high levels of p25-GFP (Figures 3F and 3G) and were formed by calcitonin-positive neoplastic C cells that invaded the tracheal muscle and extended into the tracheal lumen, leading to obstruction (Figures 3H and 3I). Clusters of calcitonin-positive C cells invaded and metastasized within the vasculature in the skeletal muscles near the lungs (Figure 3J). Together these histological analyses indicate that these thyroid tumors are MTC.

To monitor MTC tumorigenesis, thyroid samples were examined at different time points following induction of p25OE (Figure 4A). In control animals, thyroid gland was normal, comprised of follicular cells surrounding distinct colloid-filled follicles. C cells were interspersed in-between follicular cells as detected by a calcitonin-specific immunostaining (Figure S3). After 5 weeks of p25OE, mild C cell hyperplasia developed and progressed into small tumors within 11 weeks. By 16 weeks, large bilateral MTC tumors had formed and invaded the space between trachea and esophagus. At this stage, no more follicles were visible. The thyroid tumors were divided by fibrous septa in a nested pattern and consisted of a population of round cells with uniform nuclei and amphophilic cytoplasm, characteristic of MTC. All mice examined died within 30 weeks of p25OE. However, stopping p25OE after 5, 11, or 16 weeks led to 100% survival of mice analyzed for up to 32 weeks (Figure 4B). Indeed, all data represent mean values, error bars are ± SEM, and p values were determined by a two-tailed paired Student’s t test, where n = 4 (C–G). For (B), (D), and (G), number of cells is 1,000-fold. See also Figure S2.
switching off p25OE at early stages of MTC tumorigenesis (5 weeks) prevented C cell hyperplasia, while repressing p25OE at later stages of the disease (11 or 16 weeks) resulted in the arrest of tumor growth (Figure 4C). As expected, arrested tumors lacked p25-GFP expression. However, repressing p25OE did not affect Cdk5 or p35 protein levels (Figure 4D). Cdk5 activity was significantly reduced in arrested (p25OE Off) tumors compared to proliferating (p25OE On) tumors in which p25 aberrantly activates Cdk5 (Figure 4E).

Together these results demonstrate that NSE promoter-driven p25OE results in the formation of thyroid tumors featuring the characteristics of human MTC (Fialkowski and Moley, 2006) and that aberrant Cdk5 activation by p25-GFP contributes to MTC proliferation in this mouse model.

In Vitro Characterization of p25OE Mice MTC
To further confirm the role of Cdk5 in MTC, we generated a cell line from the MTC of p25OE mice (MTCp25). These cells grew as floating clusters and exhibited anchorage-independent growth and malignant transformation in a soft agar assay (Figure 5A). Importantly, MTCp25 cells retained the characteristics of the mouse tumors. These cells were calcitonin-positive, expressed p25-GFP and Cdk5 (Figure 5B), and secreted calcitonin in the culture media (approximately 100 pg/ml). As shown in the tumors, p25-GFP expression and Cdk5 activity were controlled by doxycycline (Figures 5C and 5D). Repressing p25-GFP overexpression by culturing the cells in the presence of doxycycline dose-dependently arrested cell proliferation but had no effect on cell viability (Figure 5E). Furthermore, doxycycline had no effect on the proliferation of a heterologous non-small-cell lung carcinoma line, H1299 (Figure S4A). Thus, turning off p25OE with doxycycline stops mouse MTCp25 cell growth without causing cell death.

To substantiate the role of Cdk5 activity on MTC tumorigenesis, the effect of Cdk5 inhibition on MTCp25 cell proliferation and viability was assessed. CP681301 dose-dependently reduced MTCp25 cell proliferation and viability as was observed with human MTC cell lines (Figure 5F). Moreover, two alternate Cdk5 inhibitors, indolinone A and roscovitine, also stopped MTCp25 cell proliferation (Figures S4B and S4C). Finally, siRNA
knockdown of Cdk5 reduced Cdk5 expression and activity as well as cell growth (Figures 5G and 5H). Taken together, these findings show that MTCp25 cell proliferation is dependent on the Cdk5 activity that is mediated by p25OE, further supporting a role for Cdk5 in MTC progression.

Retinoblastoma Protein Plays a Critical Role Downstream of Cdk5 Activation in MTC Proliferation

To identify Cdk5 downstream effectors, we profiled proteins containing Cdk5 consensus phosphorylation sites in proliferating versus arrested p25OE mouse tumors by phospho-scan...
Peptides phosphorylated at serine 807 of Rb were highly enriched in proliferating mouse tumors compared with arrested tumors (Figure S5A), which was confirmed by immunoblotting (Figure 6A). Likewise, phospho-Ser807/Ser811 Rb levels were increased in doxycycline-deprived cultured MTCp25 cells in which p25OE is induced and Cdk5 activity is elevated (Figure 6B). Furthermore, consistent with Cdk5, p35, and p25 expression, phospho-Ser807/Ser811 Rb was elevated significantly in human sporadic MTC tumors but not MEN2A samples compared to control tissue (Figure 6C). Together, these results suggest a mechanistic link between Cdk5 activity, Rb phosphorylation, and sporadic MTC.

Because Ser807 and Ser811 are known Cdk5 phosphorylation sites (Futatsugi et al., 2012; Hamdane et al., 2005) and Rb deletion has been linked to neuroendocrine tumorigenesis (Takahashi et al., 2006; Williams et al., 1994), we postulated that Rb is a downstream effector of Cdk5 and that Cdk5-Rb signaling promotes MTC. Indeed, inhibiting Cdk5 activity in mouse and human MTC cells by treatment with CP681301 decreased phospho-Ser807/Ser811 Rb in a dose-dependent manner and stopped cell growth (Figures 6D and 6E; Figure S5B; Figure 2B; Figure S2A). Furthermore, disrupting Cdk5 activity in human MTC cells by expressing a kinase-dead Cdk5 or knockdown of p35 diminished phospho-Ser807/Ser811 Rb and reduced MTC cell proliferation (Figures 6F and 6G; Figures 2D and 2F; Figures S5C, S5D, S2C, and S2E). Finally, competing with Cdk5 phosphorylation of Rb by treating mouse or human MTC cell lines with a small inhibiting peptide (SIP) that consisted of a 19-amino-acid Rb sequence encompassing Ser807/Ser811 dose-dependently reduced phospho-Ser807/Ser811 Rb and cell proliferation (Figure 6H; Figure S5E). The SIP had no effect on STAT3 phosphorylation at known Cdk5 sites, indicating specificity for Rb phosphorylation (Figure 6H). Together, these findings identify Rb as a Cdk5 downstream target in MTC tumorigenesis.

Having confirmed Rb as an important Cdk5 target, we investigated the mechanism by which Cdk5-Rb mediates MTC proliferation. Rb acts as a tumor suppressor by binding the E2F transcription factors, thereby blocking their transcriptional activity. Upon Rb phosphorylation by cyclin-dependent kinases, E2Fs are released and activate the expression of their target genes, including Cdk2 and Cyclin A (Chellappan et al., 1991; DeGregori et al., 1997; Knudsen et al., 1999). In agreement with this, arrest of mouse tumor growth by repressing p25OE abolished Cdk2 and Cyclin A expression (Figure 6I). Furthermore, inhibiting Cdk5 activity in human MTC cells with CP681301 attenuated
Figure 6. Rb Is a Downstream Target of Cdk5 in MTC

(A) Immunoblots of lysates from proliferating (p25OE On) and arrested (p25OE Off) p25OE tumors probed with antibodies to phospho-Ser807/Ser811 (pS-Rb) and total Rb (n = 4) are shown.

(B) Effect of doxycycline-induced repression on pS-Rb levels in MTCp25 cells is shown.

(C) Immunoblots of lysates from normal thyroid (Norm) (n = 5), sporadic (Spo) (n = 6), and hereditary (MEN2A) (n = 7) MTC patient specimens were probed with antibodies to pS-Rb and GAPDH. For Spo, p = 0.0117; MEN2A, p = 0.1316, two-tailed unpaired Student’s t test with Welch’s correction.

(D and E) Immunoblots of lysates from MTCp25 cells (D) and MTC-SK cells (E) following a 16 hr CP681301 treatment probed with antibodies to pS-Rb and GAPDH and quantification are shown.

(F and G) Immunoblots from lysates of MTC-SK cells transfected with (F) a control plasmid (Con) or a kinase-dead Cdk5 expression vector (KD) and (G) with a scrambled siRNA (Con) or a p35 siRNA (siRNA) and probed with antibodies to pS-Rb and GAPDH and quantification are shown. In (F), p = 0.0057; in (G) p = 0.0365.

(H) Immunoblots show the effect of SIP on the phosphorylation of endogenous Rb (at Ser807/Ser811) and STAT3 (left panel). Effect of 10 μM Rb SIP on MTCp25 (left) and MTC-SK (right) cell proliferation is shown (right panel). For MTCp25, p = 0.0336; for MTC-SK, p = 0.0157.

(I) Immunoblots of lysates from proliferating (p25OE On) and arrested (p25OE Off) mouse tumors probed with antibodies to pS-Rb, Cdk2, Cyclin A, and GAPDH are shown.

(J) Immunoblots of lysates from MTC-SK cells treated with CP681301 (5 μM) for 0, 12, or 24 hr probed with antibodies to pS-Rb, Cdk2, Cyclin A, Cdk5, and GAPDH and quantification are shown. For pS-Rb, p < 0.0001 for 0 versus 12 hr, and p < 0.0002 for 0 versus 24 hr; for Cdk2, p = 0.0315 for 0 versus 12 hr, and p = 0.0164 for 0 versus 24 hr; for Cyclin A, p = 0.0257 for 0 versus 24 hr.

(legend continued on next page)
Cdk2 and Cyclin A expression in MTC-SK cells by 25% within 12 hr and by 40% after 24 hr of treatment (Figure 6J). In SIN-J cells, CP681301 reduced Cdk2 and Cyclin A levels by more than 50% within 12 hr (Figure S5F). As expected, Rb phosphorylation levels were reduced by more than 50% within 12 hr following CP681301 application to both cell lines. Thus, Cdk2 and Cyclin A appear to be invoked as downstream effectors of the Cdk5-Rb signaling and this cascade may mediate MTC tumorigenesis. In line with these observations, MTC cell growth was reduced by pharmacological blockade of Cdk2 activity with CVT-313 (Figure 6K; Figure S5G). Importantly, inhibition of Cdk2 only partially reduced Rb phosphorylation but had no effect on Cdk5 expression and activity (Figures 6L and 6M; Figure S5H). This effect is consistent with the ability of Cdk2 to contribute to Rb phosphorylation and cell cycle progression (Harbour et al., 1999). Thus, Cdk5 may contribute meaningfully to the progression of some forms of MTC by inactivating Rb and enabling the expression of the E2F target genes, Cdk2 and Cyclin A (Figure 6N).

DISCUSSION

Although tremendous advances have been made in understanding how RET causes MTC, little is known about other mechanisms that contribute to the majority of neuroendocrine thyroid cancers. Here, we demonstrate that Cdk5 is crucial for human MTC cell proliferation and thus it contributes to MTC progression. Previous work implicated Cdk5/p35 in the proliferation of the TT cell line, which was derived from familial human MTC and contains a RET mutation at codon 634 resulting in constitutive RET activation (Berger et al., 1984; Lin et al., 2007). It was suggested that p35, but not p25, drives Cdk5 activity and is necessary to maintain the RET-dependent growth of this cell line, implying that Cdk5 activation may be downstream of RET. However, we found that dysregulation of Cdk5 activity by overexpressing p25 caused MTC, thus suggesting that Cdk5 rather than RET may trigger MTC. Nevertheless, a link between Cdk5 activity in human MTC and the RET or RAS signaling pathways cannot be ruled out and should be further explored.

In evaluating pro-proliferative downstream effectors for Cdk5, we found that Cdk5 phosphorylates Rb and that inactivation of Cdk5 prevents Rb phosphorylation, reduces Cdk2 and Cyclin A expression in human MTC cells and arrested mouse tumors. Deregulation of Rb signaling is a well-known cause of cancer (Weinberg, 1995). Rb is a tumor suppressor that prevents cell cycle progression from G1 to S by binding and sequestering E2F transcription factors (Sellers et al., 1995). Upon Rb phosphorylation by cyclin/cyclin-dependent kinase complexes, E2Fs are released and activate the transcription of target genes whose products are necessary for cell cycle progression (Bracken et al., 2004). Numerous mitogenic and oncogenic pathways invoke Cyclin D expression. The resulting Cyclin D-Cdk4/Cdk6 complexes catalyze the initial Rb phosphorylation while Cyclin A-Cdk2 can contribute to the maintenance of the phosphorylated Rb-dependent neoplastic state (Nevins, 2001). Our findings raise the possibility that Cdk5 may catalyze the initial Rb phosphorylation and replace Cyclin D-Cdk4/Cdk6 complexes in some neuroendocrine cancers.

In support of this hypothesis, here Rb phosphorylation at Ser807/Ser811 correlated with Cdk5 activity in growing mouse tumors and in human MTC cells and was arrested in MTC cells overexpressing dominant negative, kinase-dead Cdk5 or subjected to p35 knockdown. Previously, Ser807/Ser811 Rb was reported as a substrate of aberrant Cdk5 in injured neurons (Pankickar et al., 2008). The present results implicate Rb as a likely Cdk5 substrate in MTC tumorigenesis. Given that Cdk5 plays important roles in the central nervous system, using a Cdk5 inhibitor to treat MTC may have undesirable side effects. Targeting protein-protein interactions such as those of Rb or other pro-proliferative downstream effectors may provide more selectivity for eventual clinical applications.

Previously, loss of Rb and E2F transcription factors alleles has been linked to neuroendocrine cancers including MTC (Salon et al., 2007; Takahashi et al., 2004; Ziebold et al., 2003). For example, mice carrying a single functional copy of the Rb wild-type gene develop MTC and this tendency is increased in the C57BL6 mouse strain (Harrison et al., 1995; Leung et al., 2004; Nikitin et al., 1999; Williams et al., 1994; Yamasaki et al., 1998). In humans, genetic analysis of sporadic and hereditary MTC patients has identified mutations in genes encoding the INK4 and CIP/KIP families of CDK inhibitors, which are negative regulators of the Rb pathway. Specifically, somatic mutations in the CDKN2C gene (p18INK4 gene) have been found in several studies and correlated to higher MTC proliferation rates (Flicker et al., 2012; van Veelen et al., 2009). Additionally, mutations within chromosome 19p13.2, which contains the CDKN2B gene (p19INK4b gene), have also been detected frequently in MTC patients (Flicker et al., 2012; Ye et al., 2008). Finally, the CDKN2B gene (p15INK4a gene) has been identified as a low-penetration gene in MTC (Rui-Llorente et al., 2007). Thus, these genetic analyses provide ample evidence that, in addition to RET/RAS somatic mutations, targeting of the Rb pathways through inactivation of CDK inhibitor family members contributes to human MTC tumorigenesis.

In our mouse model, NSE promoter-driven p25-GFP expression was predominantly detected in the thyroid. Only low levels of p25-GFP could be detected in lungs and adrenal gland, and no primary tumors were observed in these tissues. The reason for this expression selectivity or possible sensitivity of C cells

K Effect of CVT-313 on sporadic MTC-SK cell proliferation and viability is shown.

L Immunoblots of lysates from MTC-SK cells treated with CVT-313 for 12–14 hr probed with antibodies to pS-Rb, Cdk5, and GAPDH are shown.

M Immunoblot for p-H1 showing Cdk2 and Cdk5 activity in MTC-SK cells treated with CVT-313 for 12–14 hr. For Cdk2, p = 0.0051 for 0 versus 25 μM.

N A schematic model for the Cdk5-Rb-Cdk2 pathway in MTC is shown. Rb binds to E2F and suppresses its transcriptional activity, thereby preventing cell proliferation. Upon Rb phosphorylation by Cdk5, E2F is released and activates the transcription of target genes including Cdk2 and Cyclin A that mediate cell proliferation.

All data are mean values (n = 4) and error bars represent ± SEM; p values were determined by a two-tailed paired Student’s t test. For (H) and (K), cell numbers are 1,000-fold. See also Figure S5.
to Rb inactivation is presently unclear. However, we do not exclude a role for Cdk5 in other neuroendocrine cancers. Neuroendocrine cancers are silent killers because they are difficult to diagnose due to a lack of symptoms and are often uncovered at advanced stages when the window for effective surgical treatment has passed. Few treatment options are available in part as a result of incomplete understanding of the underlying molecular pathways and the lack of relevant animal models (Knostman et al., 2007). Existing models of MTC include transgenic mice bearing RET mutations (Cranston and Ponder, 2003) and animals deficient for Rb1/p53 (Harvey et al., 1995), prolactin receptor (Kedzia et al., 2005), or Rb1/Nras (Takahashi et al., 2006). However in most of these, constitutive transgene expression or gene knockout may introduce congenital confounds. In the model introduced here, MTC is reversibly and reproducibly induced in an adult with a fully developed and functional thyroid. Importantly, MTC originates from p25-mediated aberrant Cdk5 activation in C cells and not from a RET mutation. Hence, the animal model established here represents a clinically relevant model to study the onset and progression of sporadic MTC carcinogenesis. Furthermore, the ability to arrest the disease at various stages may facilitate the identification of drug-gable targets for therapy development. Finally, this mouse model will be a useful preclinical tool for the development and testing of new adjuvant therapies for MTC (Dar et al., 2012; Wells et al., 2012).

EXPERIMENTAL PROCEDURES

Antibodies, siRNAs, Plasmids, and Peptides

Antibodies for human calcitonin were from DAKO; GFP from Abcam; GADPH from Sigma; and Cdk5, Cdk2, Cyclin A, and p35/p25 from Santa Cruz Biotechnology. The Cdk5 monoclonal Ab was described by Lagace et al. (2008). The p35/p25 polyclonal antibody is directed to an antigen in the C terminus of p35 and does not distinguish between p35 and p25. The specificity of p35/p25 antibody has been verified in brain tissues of p35 knockout animals (Fig. S1B). Antibodies to total Rb, pRb-Ser807/Ser811, STAT3, and pSTAT3 were from Cell Signaling Technology, and phospho-histone H1 from Millipore. The kinase-dead CDK5 construct pCMV-KD-Cdk5 was previously described (Saito et al., 2007), and the pCMV-EGFP was from Clontech. The peptide was synthesized by the UT Southwestern Protein Chemistry Technology Center. The sequence of the Rb-Cdk5 small interfering peptide (SIP) was R7-PGGNIYISPLKSYKISEGL and the control peptide R7-SYFKEDRPDRDK.

Human Tissue Samples

Normal human and medullary thyroid specimens were obtained through a human subject institutional-review-board-approved protocol UT Southwestern IRB 052004-044, “Molecular Analysis of Endocrine Tumors.” Written consent of subjects was obtained. Diagnosis of the neoplasm was confirmed by pathological review, and RET-germline mutation analyses were obtained with the NSE5021 strain, which has a tetracycline transactivator (tTA) directed and repeated at least two times.

Generation of NSE TetOp p25-GFP Mice

Bitransgenic mice were generated as described previously (Meyer et al., 2008). Briefly, the p25-GFP340 mouse strain, which contains a human p25-GFP transgene driven by the TetOp promoter (TetOp-p25-GFP), was crossed with the NSE5021 strain, which has a tetracycline transactivator (tTA) directed by the neural-specific enolase promoter (NSE). This form of p25 is functional (Cruz et al., 2003) and the use of the TetOp system to drive NSE-directed expression has been well characterized (Chen et al., 1999).

All mouse strains were maintained on a C57BL/6 background. Transgenic alleles were identified by a PCR-based genotyping strategy for p25-GFP and NSE-TTA alleles. Bitransgenic p25OE mice were positive for the NSE-TTA and p25-GFP transgenes. Control littermates were positive for NSE-TTA but not p25-GFP. Both groups were treated identically with regard to doxycycline administration. All subjects used in these studies were group-housed on a 12 hr light/dark cycle with access to food and water ad libitum. All procedures were performed during the light cycle between 0600 and 1800, were approved by the Institutional Animal Care and Use Committee of the University of Texas, and conducted in accordance with the applicable portions of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Cell Culture, Transfections, Drugs, and SIP Treatment

SHER-I, GRS-V, GRS-IV, RARE, SIN-J, and MTC-SK cell lines were derived from human sporadic MTC tumors and maintained as described (Kaczirek et al., 2004; Pfagner et al., 1990, 2002). The MTCp25 mouse line was established by using MTC from mice that were overexpressing p25-GFP for at least 16 weeks. Normal human diploid fibroblasts were obtained from dissected mammary tissue using routine procedures. Cells were cultured in DMEM containing 10% FBS and were employed at passage 4. For drug treatments and small interfering peptide (SIP) assays, MTCp25 cells and each human cell line were plated at a density of 2 x 10^4 cells/ml and incubated with different concentrations of doxycycline, CP681301, indolinoone A, roscovitine, and SIP for up to 5 days. The SIP contained an N-terminal poly-arginine (R7) tag to penetrate the cell. Standard methods were used for transfections and soft agar assays. Detailed procedures can be found in the Supplemental Experimental Procedures.

Cell Proliferation and Viability Assays

For proliferation analysis, cells were plated at a density of 2 x 10^5 cells/ml. The number of cells was determined on various days after plating by using a CASY-1 Cell Counter and Analyzer TTC (Scha¨ rfe System). In the figures, “number of cells” refers to the total number of cells that are counted in 1 ml cell suspension. Thus, the number of cells includes alive and dead cells. For cell viability assays, WST-1 Cell Proliferation Reagent (4-[3-[4-(iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) (Roche Diagnostics) was used as per the manufacturer’s instructions. Assays were performed in triplicate and repeated at least two times.

Immunoprecipitation-Kinase Assay

Proliferating mouse tumors were collected from mice deprived of doxycycline for at least 16 weeks. Arrested mouse tumors were obtained from mice that were off doxycycline for 16 weeks and replaced on doxycycline for 4 more weeks. MTCp25 cells were plated at a density of 2 x 10^5 cells/ml and treated, or not, with 10 μM doxycycline for 4 days. MTC-SK and SIN-J cells were plated at a density of 3 x 10^5 cells/ml and treated for 12 hr with CP681301 or transfected with pCMV-KD-Cdk5 or p35 siRNA. Transfected cells were harvested 24 hr (pCMV-KD-Cdk5) or 5 days (p35 siRNA) post transfection. Cdk5 or Cdk2 were immunoprecipitated from cell lysates by using anti-Cdk5 or anti-Cdk2 antibodies, and their activity was assessed in vitro in saturating enzyme conditions and using histone H1 as a substrate. Detailed procedures can be found in the Supplemental Experimental Procedures.

Immunoblotting

Immunoblotting was carried out as previously described (Bibb et al., 1999).

Statistical Analysis

Data for individual assays represent the mean ± SEM. All experiments were designed with matched control conditions within each experiment to enable statistical comparison via two-tailed Student’s t test, and all p values <0.05 were considered statistically significant. GraphPad Prism 6.0 was used.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and five figures and can be found with this article online at http://dx.doi.org/10.1016/j.ccr.2013.08.027.
Cdk5 in Medullary Thyroid Carcinoma

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank G. Cote for MEN2A and control thyroid lysates; E. Knudsen for NDF cells and helpful advice; E. Nester for NSE-Tta mice; K. Richter and L. Lau (Pfizer) for CP681301; F. Gillardon (Boehringer Ingelheim) for roscovitine; and S. Hisanaga for the kinase-dead Cdk5 construct. We thank J. Shelton for histopathology advice; I. Mitchell, T. Singh, T. Crone, and L. O’Connor for technical assistance; and A. Hillmann for reading the manuscript. This research was supported by a North American Neuroendocrine Tumor Society fellowship (to K.P.) and U.S. National Institutes of Health Grants to L.H.T. (NS051874), H.C. (CA121115 and CA109053), F.E.N. and L. O'Connor for technical assistance; and A. Hillmann for reading the manuscript. This research was supported by a North American Neuroendocrine Tumor Society fellowship (to K.P.) and U.S. National Institutes of Health Grants to L.H.T. (NS051874), H.C. (CA121115 and CA109053), F.E.N. (GM067674), and J.A.B. (MH79710, MH803711, DA016672, DA033485, and NS073855); the Howard Hughes Medical Institute (to L.H.T.); and American Cancer Society MEN2 Thyroid Cancer Consortium research grants (RSGM-11-182-01 and RPM-11-080-01 to H.C. and RSGM-11-190-01 to J.A.B.).

Received: September 11, 2012
Revised: June 28, 2013
Accepted: August 26, 2013
Published: October 14, 2013

REFERENCES

Cancer Cell 24, 499–511, October 14, 2013 ©2013 Elsevier Inc.

