

University of Colorado Anschutz Medical Campus

KiNet: A Novel Imaging Informatics Tool for Pancreatic Neuroendocrine Tumors

Colorado School of PUBLIC HEALTH

Introduction

Problem: Automatic nucleus identification for Ki67 labeling index (LI) assessment

- ➢ Ki67 LI assessment is mainly based on eyeball estimation or manual counting in clinical practice.
- Current nucleus detection software and methods use a multi-stage image processing pipeline or do not consider the characteristics of Ki67 immunohistochemistry stained images.

Color coding: immunopositive tumor nuclei, immunonegative tumor nuclei, non-tumor nuclei.

Proposed Highlights

- A novel, end-to-end AI algorithm for \succ single-stage nucleus localization and classification.
- An auxiliary task is introduced to exploit \succ contextual information in the images for enhanced nucleus identification.

Nucleus identification: formulate it with a regression model with a deep neural network

Fuyong Xing (<u>fuyong.xing@cuanschutz.edu</u>), Toby C. Cornish Dept. Biostatistics & Informatics, Dept. Pathology, University of Colorado Anschutz Medical Campus

Region of interest extraction: formulate it as a binary classification model to extract tumor regions for enhanced nucleus identification

Experiments **Metrics:** precision (P), recall (R), and F₁ score Classification F_1 AUC0.560 0.649 0.525 0.660 0.550 0.581 0.578 0.590 0.439 0.622 0.637 0.486 0.616 0.716 0.561 0.750 0.768 0.680 0.804 0.724 References Xing *et al.*, "Pixel-to-pixel learning with weak supervision for single-stage nucleus Recognition in Ki67 images",

Dataset: 114 pancreatic neuroendocrine tumor Ki67 IHC stained images

Model	Detection				
	P	R	F_1	$\mu_{\pm\sigma}$	P
FCN-8s	0.825	0.615	0.705	$5.087_{\pm 2.846}$	0.779
U-Net	0.859	0.650	0.740	$6.009_{\pm 3.017}$	0.769
FCRNA	0.976	0.511	0.671	$2.137_{\pm 1.805}$	0.853
FCRNB	0.979	0.543	0.698	$2.037_{\pm 1.556}$	0.869
SFCNOPI	0.952	0.680	0.793	$6.023_{\pm 2.760}$	0.863
FRCN	0.880	0.841	0.860	$4.604_{\pm 2.293}$	0.787
KiNet	0.861	0.938	0.898	2.018 ± 1.821	0.771

IEEE Trans. Biomed. Eng., 2019 https://github.com/exhh/KiNet