Simultaneous Auger e⁻ and β^- -Particle Therapy of Metastasized NET Using ¹⁶¹Tb-DOTATOC

Roger Schibli^{1,3}, Cristina Müller¹, Nicholas P. van der Meulen¹, Richard P. Baum² ¹Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland, ²Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland, 3 THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging, ENETS Center of Excellence, Zentralklinik Bad Berka, 99438 Bad Berka, Germany

Background: Targeted radionuclide therapy using radiolabeled somatostatin analogues is currently among the most successful treatment options for patients suffering from somatostatin receptor-positive metastasized neuroendocrine tumors (NET). Recurrence of the disease based on single cancer (stem) cells that have escaped the therapy is, however, still a critical point in the disease management. The aim of this project is to develop a new concept of radionuclide therapy of NET, based on the radionuclide terbium-161.

Experimental Approach: ¹⁶¹Tb has similar decay properties (β^{-} , γ) as the clinically-established ¹⁷⁷Lu (β^{-} , γ), however, it also emits Auger-e⁻ (12 e⁻/decay) which are particularly effective for the treatment of smallest lesions and even single cancer cells. We have established an elegant production route via ¹⁶⁰Gd(n, γ)¹⁶¹Gd \rightarrow ¹⁶¹Tb which leads to carrier-free ¹⁶¹Tb in quantities >10-20 GBq.

Results: In vitro and in vivo studies demonstrated superior therapeutic efficacy of ¹⁶¹Tb compared to the effect of ¹⁷⁷Lu in combination with various tumor targeting molecules including DOTATOC. We have also established the production of ¹⁶¹Tb-DOTATOC on an automated system (Eckert&Ziegler) according to GMP.

Conclusions & next steps: A pilot clinical study in three patients will be performed with ¹⁶¹Tb-DOTATOC. These data should serve as the basis for a further multi-center clinical study. We believe that killing single cancer (stem) cells and destroying micro-metastases with Auger-e⁻, while maintaining the effect of β -particles, will result in a paradigm shift in the treatment of neuroendocrine cancer.