THE OF UTAH

Introduction

- Peptide receptor radionuclide therapy (PRRT) is used to selectively deliver radiation doses to induce apoptosis in cancer cells
- PRRT traditionally uses β emitters because the daughter radionuclides of α emitters (like ²²⁵Ac) are difficult to retain
- α particles have a higher linear energy transfer than β - particles which is more lethal to cells
- 50-230 keV/µm vs. ~0.2 keV/µm
- Advantages of silica nanoparticles (SNPs) as a vehicle:
- Trap metals and daughter radionuclides
- Functionalized with peptides
- Biologically inert
- Co-incorporation of ⁸⁹Zr for PET imaging
- The resulting SNPs will be a theragnostic agent that can simultaneously treat and image tumors with ²²⁵Ac and ⁸⁹Zr, respectively

Objectives

- Produce SNPs that encapsulate both ²²⁵Ac and ⁸⁹Zr
- Coat SNPs to help contain the radioactive daughters of ²²⁵Ac
- Attach an octreotide peptide to the gold-coated SNPs for active targeting of Neuroendocrine Tumors.
- Study the in vitro and in vivo stability of the octreotide functionalized SNPs radiolabeled with ²²⁵Ac and ⁸⁹Zr

Silica Nanoparticles as a vehicle for ²²⁵Ac/⁸⁹Zr delivery for use as a **Theragnostic Agent in Targeted α-Therapy**

George L. Diehl III¹, Viktoriya Semeykina², Katherine L. Gingrich, Gabriel Mensinger¹, Illya Zharov² and Tara Mastren(C)¹ 1) Nuclear Engineering, University of Utah; 2) Chemistry, University of Utah

Direct incorporation of ²²⁵ Ac was performed via the	
Stöber method. ¹ This is shown on the left side of	
the above figure. Briefly, TEOS (Tetraethyl	•
orthosilicate) is hydrolyzed and then reacts to form	
polymers, which then turn into nanoparticles.	
Particle size is controlled by growth rate. ²²⁵ Ac was	
added to this process to determine if ²²⁵ Ac would	
incorporate into the SNPs as they were formed.	
Indirect incorporation of ²²⁵ Ac and ⁸⁹ Zr was	
performed via incubation with mesoporous SNPs	
(MSNPs). The silanol groups are negatively	
charged at pH > 5 attracting positively charged	
²²⁵ Ac and ⁸⁹ Zr cations. Two types of MSNPs were	
studied: MSNPs made with the surfactant CTAB	
(Cetrimonium bromide) as the porogen ² and	(
MSNPs made with tannic acid as the porogen. ³	
Effect of pH and temperature on radiolabeling	
yields were measured.	r
Optimum conditions for radiolabeling MSNPs with	
²²⁵ Ac were determined to be in 0.1M Ammonium	
Acetate buffer pH 5.5 at 70°C. Radiolabeling of	
MSNPs was then studied at various time points for	
both the tannic acid and CTAB MSNPS. The	
radiolabeling of ⁶⁵ Zr tannic acid and CTAB MSNPS	
As the daughter radionuclides have ~ 10 keV kinetic	
energy simulations were performed to deterimine	
the distance traveled in SNPs. The recoil of the	l
was simulated using the monte early program SPIM	
(Stopping Pange of long in Matter)	
Cold cooting of MCNIDe was abtained by ourfoce	
Gold coating of MSNPs was obtained by surface	
amination followed by the attachment of small gold	
of a gold metal layer produced by electrologe	
(chemical reduction) plating using HAuCL and	
NH_OH-HCI 4	
Results	
Direct incorporation of ²²⁵ Ac via the Stöber method	

Radiolabeling yields of ⁸⁹Zr and ²²⁵Ac into CTAB and Tannic Acid MSNPs are shown below. ⁸⁹Zr shows better binding affinity under all conditions compared to ²²⁵Ac. Highest ²²⁵Ac yields were achieved with the Tannic Acid MSNPs

We have produced ²²⁵Ac radiolabeled nanoparticles using both the direct and indirect methods. Furthermore, ⁸⁹Zr radiolabeling was verified under the same conditions for the indirect method. Direct incorporation of ⁸⁹Zr is in progress. We have also shown that a gold coating can be obtained on our MSNPs, which will help with daughter retention. Future work will evaluate ²²⁵Ac daughter retention in both the direct and indirect methods with and without gold coating. Additionally, experiments are underway to attach the peptide to the nanoparticles for direct targeting. References ¹Ibrahim, I. A., et al. J. Am. Sci 6, 985-989 (2010). ²Trewyn, B. G et at. Accounts of chemical research 40, 846-853 (2007).

We would like to thank The Education and Research Foundation for Nuclear Medicine and Molecular Imaging and the Neuroendocrine Tumor Research Foundation for funding this research.

Conclusions

³Gao, Z. et al. Chem. Mater. 26, 2030-2037 (2014). ⁴Ignacio-de Leon et al. MRS Online Proceedings Library Archive 1502 (2013).

Acknowledgements