

OBJECTIVE

Somatostatin receptor subtype 2 (Sstr2) which is overexpressed in neuroendocrine tumors represents an attractive imaging marker and therapeutic target. Radioligands derived from Sstr2-targeting peptides such as DOTATATE have been labeled with therapeutic (Lu-177 and Y-90) radionuclides to treat neuroendocrine tumors. However, most patients do not respond to the treatment of Lu-177 labeled DOTATATE (also called Lutathera). This is because peptidederived radiotherapeutics are prone to degradation in vivo [Lubberink M et al. J Nucl Med 2020; 61: 1337-1340], leading to suboptimal tumor accumulation and therapeutic efficacy. In this study, we aimed to design and synthesize imaging agents derived from an Sstr2targeting small-molecule pharmacophore which might be more stable against in vivo degradation.

Figure 1: Chemical structure of a potent Sstr2-targeting 3,6-diaryl-4aminoalkoxyquinoline scaffold.

METHODS

A potent 3,6-diaryl-4-aminoalkoxyquinoline scaffold (Figures 1 and 2) with very high binding affinity to Sstr2 (Ki (Sstr2) = 0.025 nM) was selected and synthesized [Wolkenberg SE et al. J Med Chem 2011; 54: 2351-2358]. Three DOTA-conjugated derivatives (Z06112, Z06111 and Z06110, Figure 3) with -1, neutral and +1 charged linkers were synthesized via solid-phase approach. These three ligands were labeled with Ga-68 in acetate buffer (pH 4) via microwave heating for 1 min. Imaging and biodistribution studies (Table 1 and Figure 4) were carried out at 1-h post-injection in mice bearing Sstr2expressing AR42J rat pancreatic cancer xenografts.

CONCLUSION

We synthesized three Ga-68 labeled tracers derived from an Sstr2targeting small-molecule pharmacophore, and successfully evaluated their potential for imaging using a preclinical tumor model. Two of the tracers (Ga-68 labeled Z06112 and Z06111) enabled tumor visualization and showed good tumor-to-muscle contrast ratios. Further investigations on the cause of high blood retention of these tracers are needed to improve their tumor-to-background contrast rations and imaging potentials.

Design and synthesis of ⁶⁸Ga-labeled DOTA-conjugated Sstr2-targeting small molecules for imaging neuroendocrine tumor

Zhang Z¹, Kuo HT¹, Zhang C¹, Merkens H¹, Bendre S¹, Bénard F^{1,2}, Lin KS^{1,2} ¹ Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC, Canada ²Department of Radiology, University of British Columbia, Vancouver BC, Canada

	⁶⁸ Ga-Z06112
	$(\Pi = 3)$
Blood	14.2 ± 1.67
Urine	29.6 ± 8.34
Fat	0.66 ± 0.10
Seminal gland	0.69 ± 0.13
Testes	1.12 ± 0.01
Intestines	1.70 ± 0.18
Stomach	0.68 ± 0.40
Spleen	$\textbf{3.81} \pm \textbf{0.87}$
Liver	19.4 ± 2.19
Pancreas	1.00 ± 0.13
Adrenal gland	3.02 ± 0.57
Kidney	8.61 ± 0.49
Lung	17.2 ± 6.54
Heart	3.00 ± 0.34
Tumor	3.52 ± 0.14
Muscle	0.72 ± 0.02
Bone	1.06 ± 0.27
Brain	0.26 ± 0.06
Tail	4.08 ± 1.14
Tumor/Muscle	4.87 ± 0.27
Tumor/Blood	0.25 ± 0.04
Tumor/Kidney	0.41 ± 0.01

